Cho tứ giác ABCD có AC Vuong goc voi BD. AB=8cm. BC=7cm, AD=4cm. Tinh CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Vẽ BH vuông góc DC
Suy ra : BH=12 (vì AD vuông góc với DC và AD=12)
Tính HC :
Áp dụng định lý Pi-ta-go ,ta có :
BH2+HC2=BC2
122+x2=132
144+x2=169
x2=169-144
x2=25
=>x=5
Tính DC
Ta có : DH+HC=DC (vì AB = DH)
11+5=DC
15=DC
Hay : DC=15
Tính AC
Áp dụng định lý pi-ta-go , ta có :
AD2+DC2=AC2
122+162=x2
144+256=x2
400=x2
=>x=20
2. Vẽ ch vuông góc ab tại h --> adch là hbh --> ch = 8 cm
ta có: abc + cbh = 180 ( kb) --> cbh= 45 mà chb = 90 --> bch là tam giác vuông cân --> ch= hb = 8cm
ta có ab+ bh = ah --> 7+8+ 15 cm Mà ah = dc ( adch là hbh)--> dc= 15 cm
áp dụng đl pytago ta có tam giác adc vuông tại d --> ad2+dc2= ac2
ac2= 64+225=289
Vậy ac = 17 cm
Xet tam giac AOB OA^2+OB^2=AB^2
CM Tuong Tu: OD^2=AD^2-OA^2 :OC^2=BC^2-OB^2 (1)
Co DC^2=OD^2+OC^2 (2)
Thay (1) vao (2)Ta duoc
AD^2+BC^2-(OA^2+OB^2)=DC^2 =>4^2+7^2-8^2=DC^2=>DC=1cm
a) \(S_{ABCD}=\frac{\left(3+7\right).4}{2}=20\left(cm^2\right)\)
b) Ta có : MA = MD
NB = NC
\(\Rightarrow\)MN là đường trung bình của hình thang ABCD
\(\Rightarrow\)MN // BC (1)
Ta có : MD ⊥ BC
NH ⊥ BC
\(\Rightarrow\)MD // NH (2)
Từ (1) và (2) suy ra : Tứ giác MNHD là hình bình hành
Mà : \(\widehat{MDH}=90^o\)
\(\Rightarrow\)Tứ giác MNHD là hình chữ nhật (dhnb)
Vì M là trung điểm của AD
\(\Rightarrow\)MD = \(\frac{1}{2}\)AD
\(\Rightarrow\)MD = 2 cm
Vì MN là đường trung bình của hình thang ABCD
\(\Rightarrow MN=\frac{3+7}{2}=5cm\)
Vậy \(S_{MNHD}=MD.MN=2.5=10\left(cm^2\right)\)