2. Hình thang ABCD(AB//CD) có AB=2cm,CD=5cm.Chứng minh AD+BC>3cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tham khảo tại đây nhé, mk bận ko thể giải cho bn dc, thông cảm nha, h mk phải ik ăn đám cứ r, chúc bn hc tốt nhé
http://pitago.vn/question/a-dung-hinh-thang-abcd-ab-cd-biet-day-ab-2-cm-hai-10453.html
trên CD lấy điểm H sao cho DH=AB
Tứ giác ABHD có DH=AB và DH//AB
=>ABHD là HBH
=>AD=BH
DH+HC=CD
2+HC=5
=>HC=3
áp dụng BĐT tam giác trong tam giác BHC ta có
BH+BC>HC
hay AD+BC>3
Đề sửa lại: Hình thang ABCD ( AB//CD ) có AB=2cm CD=5cm. Chứng minh rằng AD + BC>3cm
Giải:
Tg ADC có DC - AD < AC (bất đằng thức tam giác)(1)
tg ABC có AC < AB + BC (bất đằng thức tam giác)(2)
Từ (1) và (2) => DC - AD < AB + BC => DC - AB < AB + BC
mà AB=2cm CD=5cm => 5 - 2 < AB + BC hay AB + BC > 3 (đpcm)
Chúc bạn thành công!
Giải: (sửa giúp)
...v.v...
Từ (1) và (2) => DC - AD < AB + BC => DC - AB < AD + BC
từ A hạ \(AE\perp DC\)
từ B hạ \(BF\perp DC\)
\(AB//CD=>AB//EF\)\(=>ABCD\) là hình chữ nhật
\(=>AB=EF=2cm\)
vì ABCD là hình thang cân\(=>\left\{{}\begin{matrix}AD=BC\\\angle\left(ADE\right)=\angle\left(BCF\right)\end{matrix}\right.\)
mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^o\)
\(=>\Delta ADE=\Delta BFC\left(ch.cgn\right)=>DE=FC=\dfrac{DC-EF}{2}=\dfrac{6-2}{2}=2cm\)
xét \(\Delta ADE\) vuông tại E có: \(AE=\sqrt{AD^2-ED^2}=\sqrt{3^2-2^2}=\sqrt{5}cm\)
\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)AE}{2}=\dfrac{\left(2+6\right)\sqrt{5}}{2}=4\sqrt{5}cm^2\)
tự vẽ hình nha bạn
Vẽ BE \(//\)AC (\(E\in AC\))
Ta có AB \(//\)CE (AB\(//\)CD)
nên ABEC là hình thang có 2 đáy là AB và CE
mà BE\(//\)AC
nên AC = BE; AB = CE (=2cm)
Ta có CD = CE + DE
nên 5 = 2 + DE
do đó DE = 5 - 2 = 3(cm)
Xét ΔBED
Ta có BE + BC > DE (bất đẳng thức tam giác)
mà BE = AC; DE = 3 cm (cmt)
nên AC + BC > 3cm