Cho C = 124* (\(\frac{1}{1\cdot1985}\)+ \(\frac{1}{2\cdot1986}\)+ ............+ \(\frac{1}{16\cdot2000}\))
D = \(\frac{1}{1\cdot17}\)+ \(\frac{1}{2\cdot18}\)+ \(\frac{1}{3\cdot19}\)+ ...............+ \(\frac{1}{1984\cdot2000}\)
So sánh C và D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\left(\frac{9}{25}-2.18\right):\left(3\frac{4}{5}+0,2\right)\)
\(=\left(\frac{9}{25}-36\right):\left(\frac{19}{5}+\frac{1}{5}\right)\)
\(=\left(\frac{9}{25}-\frac{900}{25}\right):4\)
\(=-\frac{891}{25}.\frac{1}{4}\)
\(=-\frac{891}{100}\)
b) \(\frac{3}{8}.19\frac{1}{3}-\frac{3}{8}.33\frac{1}{3}\)
\(=\frac{3}{8}.\frac{58}{3}-\frac{3}{8}.\frac{100}{3}\)
\(=\frac{3}{8}\left(\frac{58}{3}-\frac{100}{3}\right)\)
\(=\frac{3}{8}\left(-\frac{42}{3}\right)\)
\(=\frac{3}{8}.\left(-14\right)\)
\(=-\frac{21}{4}\)
c) \(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)
\(=\frac{27}{23}+\frac{5}{21}-\frac{4}{23}+\frac{1}{2}+\frac{16}{21}\)
\(=\frac{27}{23}+\frac{5}{21}+\left(-\frac{4}{23}\right)+\frac{1}{2}+\frac{16}{21}\)
\(=\left[\frac{27}{23}+\left(-\frac{4}{23}\right)\right]+\left(\frac{5}{21}+\frac{16}{21}\right)+\frac{1}{2}\)
\(=1+1=2\)
d) \(\frac{21}{47}+\frac{9}{45}+\frac{26}{47}+\frac{4}{5}\)
\(=\frac{21}{47}+\frac{9}{45}+\frac{26}{47}+\frac{36}{45}\)
\(=\left(\frac{21}{47}+\frac{26}{47}\right)+\left(\frac{9}{45}+\frac{36}{45}\right)\)
\(=1+1=2\)
\(=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\right)\)
=\(2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)
=\(2\left(1-\frac{1}{21}\right)\)
=\(\frac{2.20}{21}=\frac{40}{21}\)
Ta có
\(C=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}...+\frac{1}{17.18}>A=\frac{1}{2.3}+\frac{1}{5.4}+...+\frac{1}{18.19}\)
\(C< =>\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{18-17}{17.18}\)\(>A\)
\(C< =>\frac{1}{2}-\frac{1}{18}\)\(>A\)
\(C< =>\frac{4}{9}\)\(>A\left(1\right)\)
Lại có \(C=\frac{4}{9}< \frac{9}{19}=B\left(2\right)\)
Từ (1),(2) => B>A
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\)
\(\Rightarrow A=\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+...+\frac{1}{19}.\frac{1}{20}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{20}=\frac{19}{20}\)
a) \(\frac{2}{3}.\left(\frac{1}{3}+\frac{2}{5}\right)=\frac{2}{3}.\frac{11}{15}=\frac{22}{45}\)
b) 24+25+26+...+99+100
= (100+24).77:2
= 124.77:2
= 4774
c) \(\frac{16.17-5}{16.16+11}=\frac{16.16+(16-5)}{16.16+11}=\frac{16.16+11}{16.16+11}=1\)
d) \(\frac{5}{80}+\frac{5}{90}+\frac{5}{150}+\frac{5}{210}+\frac{5}{270}\)
\(=\frac{1}{16}+\frac{1}{18}+\frac{1}{30}+\frac{1}{42}+\frac{1}{54}\)
\(=\frac{2929}{15120}\)
a)=\(\frac{2}{3}.\left(\frac{5}{15}+\frac{6}{15}\right)\)
= \(\frac{2}{3}.\frac{11}{15}=\frac{22}{45}\)
d) = 5.(\(\frac{1}{80}+\frac{1}{90}+\frac{1}{150}+\frac{1}{210}+\frac{1}{270}\))
= 50........
kq là tự tính:)))))
Bài 2: ta có tích riêng thứ nhất là .....5, thứ hai cũng là ....5 -> chữ số tận cùng là: ....5 - ....5 = ...0
Bài 3: Gọi số có hai chữ số đó là ab (a,b =<9)
...........................__..... _
Theo đề bài ta có: ab = 9b
=> b = (2; 3; 4; 5; 6; 7; 8; 9)
..........................................
=> Tương ứng với b ta có ab = (18; 27; 36; 45; 54; 63; 72; 81)
Nhận xét: Chỉ có 45 = 9.5
Vậy số đó là 45