Qua A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB và ac của đường tròn.
a) Chứng minh ABOC là tứ giác nội tiếp
b) Kẻ đường thẳng qua điểmm A cắt đường tròn (O) tại hai điểm E và F sao cho E nằm giữa A và F. Chứng minh BE.CF = BF.CE
Giải giúp mình câu B
Lời giải:
a)
Vì $AB,AC$ là tiếp tuyến $(O)$ nên:
$AB\perp BO; AC\perp CO$
$\Rightarrow \widehat{ABO}=\widehat{ACO}=90^0$
$\Rightarrow \widehat{ABO}+\widehat{ACO}=180^0$
Tứ giác $ABOC$ có tổng 2 góc đối bằng $180^0$ nên là tgnt (đpcm)
b)
Xét tam giác $ABE$ và $AFB$ có:
$\widehat{A}$ chung
$\widehat{ABE}=\widehat{AFB}$ (góc tạo bởi tiếp tuyến và dây cung thì bằng góc nt chắn cung đó)
$\Rightarrow \triangle ABE\sim \triangle AFB$ (g.g)
$\Rightarrow \frac{BE}{BF}=\frac{AE}{AB}(1)$
Tương tự:
$\triangle ACE\sim \triangle AFC$ (g.g)
$\Rightarrow \frac{CE}{CF}=\frac{AE}{AC}(2)$
Từ $(1);(2)$ kết hợp với $AB=AC$ (tính chất 2 tiếp tuyến giao nhau) nên $\frac{BE}{BF}=\frac{CE}{CF}$
$\Rightarrow BE.CF=BF.CE$ (đpcm)
Hình vẽ: