Tìm x biết:
(x-2)2.(x+1).(x-4) <0
nhanh,đúng,đủ =>tick (giải trong ngày)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x = { -5 ; -2 }
b) x = { -1 ; 0 ; 1 ;2 ; 3 ; .........}
c) x = { -4 ; 3 }
d) x = { -3 ; 2 }
e) x = { 1 ; 2 ; 3 ; 4 ; .............}
Tớ ko chắn chắn cho lắm !!!!! Các bạn thấy đúg thì Tick nha !!!!!
a) Ta có: |4x - 1| - x = 15
- Nếu \(4x-1\ge0\) \(\Rightarrow x\ge\frac{1}{4}\)
=> 4x - 1 - x = 15
=> 3x = 15 + 1
=> 3x = 16
=> x = \(\frac{16}{3}\) (thỏa mãn điều kiện)
- Nếu \(4x-1< 0\Rightarrow x< \frac{1}{4}\)
=> 1 - 4x - x = 15
=> -5x = 14
=> x = \(\frac{-14}{5}\) (thỏa mãn điều kiện)
Vậy x = \(\frac{16}{3}\) hoặc x = \(\frac{-14}{5}\)
Câu b hình như là đề sai rùi bạn ơi.
c) Ta có: 2x = 3y
\(\Rightarrow\) \(\frac{x}{3}=\frac{y}{2}\) \(\Rightarrow\) \(\frac{x}{21}=\frac{y}{14}\) (1)
5y = 7z
\(\Rightarrow\) \(\frac{y}{7}=\frac{z}{5}\) \(\Rightarrow\) \(\frac{y}{14}=\frac{z}{10}\) (2)
Từ (1) và (2) suy ra:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\) \(\frac{x}{21}=2\) \(\Rightarrow\) \(x=21.2=42\)
\(\Rightarrow\) \(\frac{y}{14}=2\) \(\Rightarrow\) \(y=14.2=28\)
\(\Rightarrow\)\(\frac{z}{10}=2\) \(\Rightarrow\) \(z=10.2=20\)
Vậy x = 42; y = 28; z = 20
ĐKXĐ:\(x\ne9\)
Với \(x>9\)(1): \(\frac{x^2\left(x-3\right)}{x-9}< 0\Leftrightarrow x^2\left(x-3\right)< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)
Giao với (1) ta được \(x\in\varnothing\)
Với \(x< 9\left(2\right)\Leftrightarrow\frac{x^2\left(x-3\right)}{x-9}< 0\Leftrightarrow x^2\left(x-3\right)>0\Leftrightarrow x-3>0\Leftrightarrow x>3\)
Giao với (2) ta được \(3< x< 9\)
Vậy với \(3< x< 9\)thì bđt đúng
Đặt A = |x+1| + |x+7| + |x+20| + |x+30|
Ta có A \(=\left|x+1\right|+\left|-7-x\right|+\left|x+20\right|+\left|-30-x\right|\)
\(A\ge\left|x+1-7-x+x+20-30-x\right|\)\(=\left|1-7+20-30\right|=-16\)
=> Để C có GTNN thì |x+2003| = 0 <=> x = 2003
Vậy GTNN của C = -16 + 0 = -16
Chắc chắn đúng luôn !
Có (x-2)^2 >=0 nên để (x-2)^2.(x+1).(x-4) < 0 thì (x+1).(x-4) < 0 (1)
Mà ta thấy x+1 > x-4 (1)=> x+1 > 0 và x-4 < 0
<=> x>-1 và x <4 <=> -1 < x <4
ta có (x-2)2 \(\ge\)0
\(\Rightarrow\) x+1 và x-4 khác dấu
vì x+1 > x-4
\(\Rightarrow\) x+1> 0 và x-4 < 0
\(\Rightarrow\)x > -1 và x< 4
\(\Rightarrow\)-1 < x< 4 ( x\(\ne\)2)