K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó:ΔACB vuông tại C

=>\(\widehat{ACB}=90^0\)

Ta có: ΔOAC cân tại O(OA=OC)

mà OH là đường trung tuyến

nên OH\(\perp\)AC và OH là tia phân giác của góc AOC

Ta có: OH\(\perp\)AC(cmt)

AC\(\perp\)CB tại C(Do ΔACB vuông tại C)

Do đó: OH//BC

b:

OH là phân giác của góc AOC

=>\(\widehat{AOH}=\widehat{COH}\)

mà M\(\in\)OH

nên \(\widehat{AOM}=\widehat{COM}\)

Xét ΔOCM và ΔOAM có

OC=OA

\(\widehat{COM}=\widehat{AOM}\)

OM chung

Do đó: ΔOCM=ΔOAM

=>\(\widehat{OCM}=\widehat{OAM}\)

mà \(\widehat{OCM}=90^0\)

nên \(\widehat{OAM}=90^0\)

=>OA\(\perp\)MA tại A

=>MA là tiếp tuyến tại A của (O)

a: ΔOAB cân tại O

mà OI là đường trung tuyến

nên OI vuông góc AB

I là trung điểm của AB

=>IA=IB=16/2=8cm

ΔOIA vuông tại I

=>OA^2=OI^2+IA^2

=>OI^2=10^2-8^2=36

=>OI=6(cm)

b: OM=OI+IM

=>6+IM=10

=>IM=4cm

ΔMIA vuông tại I

=>MI^2+IA^2=MA^2

=>\(MA=\sqrt{4^2+8^2}=4\sqrt{5}\left(cm\right)\)

Xét (O) có

ΔACB nội tiếp

AB là đường kính

=>ΔACB vuông tại C

ΔOCD cân tại O

mà OI là đường cao

nên I là trung điểm của CD

=>IC=ID=CD/2=8cm

Xét ΔCAB vuông tại C cso CI là đường cao

nên CI^2=IA*IB

=>8^2=6*IB

=>IB=64/6=32/3(cm)

AB=IB+IA=32/3+6=50/3(cm)

=>R=50/3:2=25/3(cm)

21 tháng 12 2020

PS. Em đã làm được rồi ạ.

NV
21 tháng 12 2020

\(ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

\(\left\{{}\begin{matrix}\widehat{ACB}+\widehat{BCH}=90^0\\\widehat{CBH}+\widehat{BCH}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{ACB}=\widehat{CBH}\)

\(\Rightarrow\widehat{ABC}=\widehat{CBH}\)