cho ƯCLN(a,b)=1
chứng minh rằng:ƯCLN(a+b,a)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy:
\(a\sqrt{b-1}=a\sqrt{1\left(b-1\right)}\le a\dfrac{1+b-1}{2}=\dfrac{ab}{2}\left(1\right)\)
CMTT: \(b\sqrt{a-1}\le\dfrac{ab}{2}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\le ab\left(đpcm\right)\)
\(ĐTXR\Leftrightarrow a=b=1\)
áp dụng BĐT Bunhiacopxky
\(=>\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(=>3\left(a^2+b^2+c^2\right)\ge1^2\)
\(=>a^2+b^2+c^2\ge\dfrac{1}{3}\left(đpcm\right)\)
dấu"=" xảy ra<=>\(a=b=c=\dfrac{1}{3}\)
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(a-1\right)\left(bc-b-c+1\right)\)
\(=abc-\left(ab+bc+ca\right)+a+b+c-1\)
\(=abc-abc+1-1=0\) (đpcm)
\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}=\dfrac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}=1-\dfrac{a^2b^2-1}{a^2b^2+a^2+b^2+1}\ge1-\dfrac{a^2b^2-1}{a^2b^2+2ab+1}=\dfrac{2}{ab+1}\)
Dấu "=" xảy ra khi \(a=b\) hoặc \(ab=1\)
\(< =>VT< =>\dfrac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}=\dfrac{a^2+b^2+2}{a^2+a^2b^2+b^2+1}\)
\(VT\ge VP\)(giả thiết)
\(< =>\dfrac{a^2+b^2+2}{a^2+a^2b^2+b^2+1}\ge\dfrac{2}{1+ab}\)
\(< =>a^2+b^2+2+a^3b+ab^3+2ab-2a^2-2b^2-2a^2b^2-2\ge0\)
\(< =>\left(a-b^{ }\right)^2\left(ab-1\right)\ge0\)(luôn đúng với mọi a,b là các số thực dương thỏa mãn \(ab\ge1\))
\(\)
Lời giải:
Áp dụng BĐT Cô-si:
$a^2+1\geq 2a$
$b^2+1\geq 2b$
$c^2+1\geq 2c$
$\Rightarrow a^2+b^2+c^2+3\geq 2(a+b+c)$
Cũng áp dụng BĐT Cô-si: $a+b+c\geq 3\sqrt[3]{abc}=3$
$\Rightarrow a^2+b^2+c^2+3\geq 2(a+b+c)\geq a+b+c+3$
$\Rightarrow a^2+b^2+c^2\geq a+b+c$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
hello ae