K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

với \(n⋮2\Rightarrow n=2k\)

(8n+1).(6n+5)=(8.2k+1)(6.2k+5)

=(16k+1).(12k+5)

=(...1).(...5)

=(...5)

\(\Rightarrow\)(8n+1).(6n+5) không chia hết cho 2                   (1)

với n không chia hết cho 2\(\Rightarrow\)2=2k+1

(8n+1).(6n+5)=[8.(2k+1)+1].[6.(2k+1)+5]

=(16k+8+1).(12k+6+5)

=(16k+9).(12k+11)

=(...9).(...1)

=(...9)

\(\Rightarrow\)(8n+1).(6n+5) không chia hết cho 2                                          (2)

Từ (1) và (2)

\(\Rightarrow\)(8n+1).(6n+5) không chia hết cho 2

                                                 điều phải chứng minh

bạn ơi (...1) đọc là chữ số tận cùng của 1 đó

30 tháng 10 2017

Xét n lẻ => 8n+1 lẻ, 6n+5 lẻ => (8n+1).(6n+5) lẻ => không chia hết cho 2.

Xét n chẵn => 8n+1 lẻ, 6n+5 lẻ => (8n+1).(6n+5) lẻ => không chia hết cho 2.

Xét n = 0 => 8n+1=1 ; 6n+5=5 => (8n+1).(6n+5) = 5 => không chia hết cho 2.

Từ 3 điều trên suy ra (8n+1).(6n+5) không chia hết cho 2.

17 tháng 7 2018

a) \(\left(5n+7\right)\left(4n+6\right)\)

\(=\left(5n+7\right)4n+\left(5n+7\right)6\)

\(=20n^2+28n+30n+32\)

\(=20n^2+58n+32\)

\(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)

b) \(\left(8n+1\right)\left(6n+5\right)\)

\(=\left(8n+1\right)6n+\left(8n+1\right)5\)

\(=48n^2+6n+40n+5\)

\(=48n^2+46n+5\)

\(\left(48n^2+46n\right)⋮2\)\(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)

c) \(n\left(n+1\right)\left(2n+1\right)\)

\(=n\left(n+1\right)\left(n-1+n-2\right)\)

\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)

Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\)\(n\left(n+1\right)\left(n+2\right)⋮6\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)

19 tháng 7 2015

a)(5n+7)(4n+6)

nếu n=2k =>(5.2k+7)(4.2k+6)=(10k+7)(8k+6)

Vì 8k+6 chia hết cho 2 nên (10k+7)(8k+6) chia hết cho 2   (1)

nếu n=2k+1 =>[5.(2k+1)+7].[4.(2k+1)+6]=(10k+5+7).(8k+4+6)=(10k+12).(8k+10) chia hết cho 2    (2)

Từ (1)  (2) =>(5n+7).(4n+6) luôn chia hết cho 2

=>đpcm

30 tháng 7 2015

n chẵn => n = 2k (k \(\in\)N)

n3 + 6n+ 8n = (2k)+ 6.(2k)2 + 8.(2k) = 8k3 + 24.k+ 16k = 8k. (k+ 3k + 2) = 8k.(k+ 2k + k + 2)

= 8k. [k(k +2) + (k+2)] = 8k.(k+1).(k+2)

Nhận xét: k; k+1; k+ 2 là 3 số tự nhiên liên tiếp nên tích của chúng chia hết cho 6

=>  8k.(k+1).(k+2) chia hết cho 8.6 = 48

=> n3 + 6n+ 8n chia hết cho 48

7 tháng 11 2019

ko bk lam

8 tháng 11 2017

1. Ta có:

\(\left(8n+1\right)\left(6n+5\right)\)

\(=\left(8n+1\right).6n+\left(8n+1\right).5\)

\(=48n^2+6n+40n+5\)

\(=48n^2+46n+5\)

\(48n^2+46n⋮2\)\(5⋮̸2\)

Vậy \(\left(8n+1\right)\left(6n+5\right)⋮̸2\left(đpcm\right)\)

2. Số số hạng của tổng S:

\(\left(154-1\right):1+1=154\) (số)

\(S=\left(1+154\right).154:2=11935\)

\(11935⋮̸2\) hay \(S⋮̸2\)