Tính giá trị biểu thức sau :
\(A=\frac{7^{200}+7^{196}+...+7^4+1}{7^{202}+7^{200}+...+7^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(7^{200}< 7^{205}\Rightarrow7^{200}+1< 7^{205}+1\Rightarrow\frac{7^{200}+1}{7^{202}+1}< \frac{7^{205}+1}{7^{202}+1}\)
vi 7200 + 1 < 7205 + 1 => \(\frac{7^{200}+1}{7^{202}+1}< \frac{7^{205}+1}{7^{202}+1}\)
=> \(A< B\)
\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{\dfrac{8}{2}-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}=\dfrac{1}{4}\)
\(B=\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
\(B=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(B=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}\)
\(B=\frac{1}{4}\)
a) \(\frac{2}{7}:1=\frac{2x1}{7x1}=\frac{2}{7}\)
\(\frac{2}{7}:\frac{3}{4}=\frac{2}{7}x\frac{4}{3}=\frac{2x4}{7x3}=\frac{8}{21}\)
\(\frac{2}{7}:\frac{5}{4}=\frac{2}{7}x\frac{4}{5}=\frac{2x4}{7x5}=\frac{8}{35}\)
Hai câu còn lại mih k hiểu đề lắm nhé!!
cảm ơn bạn nhiều !!
mình không biết làm hai câu cuối thôi@
cảm ơn bạn lần nữa
\(A=-1+7-7^2+7^3-...-7^{202}\)
\(7A=7\left(-1+7-7^2+7^3-...-7^{202}\right)\)
\(7A=-7+7^2-7^3+...+7^{202}-7^{2003}\)
\(7A+A=\left(-7+...+7^{202}-7^{203}\right)+\left(-1+7-...-7^{202}\right)\)
\(8A=-7^{203}-1\Rightarrow A=\dfrac{-7^{203}-1}{8}\)