K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Có link câu này bạn tham khảo xem có được không nhé

https://h.vn/hoi-dap/question/535151.html

Học tốt nhé!

8 tháng 8 2015

A=\(-x^2+2xy-4y^2+2x+8y-8=-\left(x^2-2xy+y^2-2x+1+2y\right)-\left(3y^2-6y+3\right)-4=-4-\left(x-y-1\right)^2-3\left(y-1\right)^2\le-4\)

=>Max A=-4<=>(x-y-1)2=0 và (y-1)2=0<=>x=2 y=1

28 tháng 9 2018

Đặt \(A=x^2+2y^2+2xy+2x+4y-1\)

\(A=\left(x^2+2xy+y^2\right)+\left(y^2+2y\right)+\left(2x+2y\right)-1\)

\(A=\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(y^2+2y+1\right)-3\)

\(A=\left(x+y+1\right)^2+\left(y+1\right)^2-3\ge-3\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)

Vậy GTNN của \(A\) là \(-3\) khi \(x=0\) và \(y=-1\)

Chúc bạn học tốt ~ 

28 tháng 9 2018

Đặt \(B=-x^2-2x-y^2-8y-10\)

\(-B=\left(x^2+2x+1\right)+\left(y^2+8y+16\right)-7\)

\(-B=\left(x+1\right)^2+\left(y+4\right)^2-17\ge-17\)

\(B=-\left(x+1\right)^2-\left(y+4\right)^2+17\le17\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x+1\right)^2=0\\-\left(y+4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-4\end{cases}}}\)

Vậy GTLN của \(B\) là \(17\) khi \(x=-1\) và \(y=-4\)

Chúc bạn học tốt ~ 

13 tháng 7 2019

\(1.\)

\(a;A=-2x^2+4x-18\)

\(A=-2\left(x^2-4x+18\right)\)

\(A=-2\left(x^2-2.x.2+4+14\right)\)

\(A=-2\left(x-2\right)^2-14\le-14\)

Dấu = xảy ra khi : \(x-2=0\)

                              \(\Rightarrow x=2\)

Vậy Amax =-14 tại x = 2

Các câu còn lại lm tương tự........

14 tháng 7 2019

\(a-2x^2+4x-18\)

=-[(2x2-2x.2+4)+14]

=-[(2x-2)2+14]

=-(2x-2)2-14

Vì -(2x-2)2 bé hơn hoặc bằng 0 với mọi x nên -(2x-2)2-14 bé hơn hoặc bằng -14

Dấu "=" xảy ra khi x=1 

Vậy GTLN là -14 tại x=1

Mấy bài khác tương tự nha bạn. Áp dụng hằng đẳng thức và trình bày như thế

bài 2 xem lại cách ra đề nha bạn

13 tháng 7 2019

1.Tìm GTLN:

a)-2x^2+4x-18

Ấn vào máy tính : mode  5  1 

Rồi án hệ phương trình vào lặp 3 lần dấu =

kq = 1

b)-2x^2-12x+12

Ấn tương tự phần a

kq = -3

c)-2x^2+2xy-5y^2+4y+2x+1

Câu này bạn chuyển về hằng đẳng thức rồi xét nghiệm tìm GTLN nha

2.Tìm x,y:

a)x^2-2x+4y^2+4y+2

= x2 - 2x . 1+ 12 + ( 2y )2 + 2 . 2y . 1 + 12 

= ( x - 1 ) 2 + ( 2y + 1 ) 2

+) ( x - 1 ) 2 = 0                                                   +) ( 2y + 1 ) = 0

      x - 1      = 0                                                         2y + 1 = 0

      x           = 1                                                           y        = \(-\frac{1}{2}\)

b)4x^2-8x+y+2y

Câu này cũng tương tự như câu trên chuyển về hằng đẳng thức nha

18 tháng 8 2018

\(A=2x^2+y^2-2xy-2x+y-12\)

\(A=\left(x^2-2xy+y^2\right)+x^2-2x+y-12\)

\(A=\left[\left(x-y\right)^2-2\left(x-y\right).\frac{1}{2}+\frac{1}{4}\right]+\left(x^2-x+\frac{1}{4}\right)-\frac{25}{2}\)

\(A=\left(x-y-\frac{1}{2}\right)^2+\left(x-\frac{1}{2}\right)^2-\frac{25}{2}\)

Do \(\left(x-y-\frac{1}{2}\right)^2\ge0\forall x;y\)

     \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow A\ge-\frac{25}{2}\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}x-y-\frac{1}{2}=0\\x-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)

Vậy  \(A_{Min}=-\frac{25}{2}\Leftrightarrow\left(x;y\right)=\left(\frac{1}{2};0\right)\)

18 tháng 8 2018

\(A=-2x^2-y^2-2xy-2x+y-12\)

\(-A=2x^2+y^2+2xy+2x-y+12\)

\(-A=\left(x^2+2xy+y^2\right)+x^2+2x-y+12\)

\(-A=\left[\left(x+y\right)^2-2\left(x+y\right).\frac{1}{2}+\frac{1}{4}\right]+\left(x^2+3x+\frac{9}{4}\right)+\frac{19}{2}\)

\(-A=\left(x+y-\frac{1}{2}\right)^2+\left(x+\frac{3}{2}\right)^2+\frac{19}{2}\)

Do  \(\left(x+y-\frac{1}{2}\right)^2\ge0\forall x;y\)

      \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge\frac{19}{2}\Leftrightarrow A\le-\frac{19}{2}\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}x+y-\frac{1}{2}=0\\x+\frac{3}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=2\end{cases}}\)

Vậy \(A_{Max}=-\frac{19}{2}\Leftrightarrow\left(x;y\right)=\left(-\frac{3}{2};2\right)\)