K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2017

x^4+4=x^4 + 4x^2 +4 - 4x^2=(x^2)^2+ 2.x^2.2+2^2 - (2x)^2 = (x^2+2)-(2x)^2 =(x^2+2-2x)(2^2+2-2x)

28 tháng 10 2017

\(x^4+4=x^4+4x^2+4-4x^2\)

                 \(=\left(x^2+2\right)^2-4x^2\)

                  \(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)

23 tháng 11 2017

x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)

k mk nha

23 tháng 11 2017

bạn ơi bạn chưa bớt 2x^2 kìa

23 tháng 11 2017

x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1

=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)

=(x3-x-1)(x2-x+1)

23 tháng 11 2017

x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)

k mk nha

23 tháng 10 2016

x4 + 64

= x4 + 16x2 + 64 - 16x2

= (x2 + 8)2 - (4x)2

= (x2 - 4x + 8)(x2 + 4x + 8)

4x4 + 1

= 4x4 + 4x2 + 1 - 4x2

= (2x2 + 1) - (2x)2

= (2x2 - 2x + 1)(2x2 + 2x + 1)

64x4 + 1

= 64x4 + 16x2 + 1 - 16x2

= (8x2 + 1)2 - (4x)2

= (8x2 - 4x + 1)(8x2 + 4x + 1)

12 tháng 8 2018

\(x^8+x^4+1\)

\(=x^4.\left(x^4+1\right)+\left(x^4+1\right)-x^4\)

\(=\left(x^4+1\right).\left(x^4+1\right)-\left(x^2\right)^2\)

\(=\left(x^4+1\right)^2-\left(x^2\right)^2\)

\(=\left(x^4+1-x^2\right).\left(x^4+1+x^2\right)\)

3 tháng 9 2018

\(x^4+1\)

\(=x^4+2x^2+1-2x^2\)

\(=\left(x^2+1\right)^2-2x^2\)

\(=\left(x^2-\sqrt{2}x+1\right)\left(x^2+\sqrt{2}x+1\right)\)

NV
12 tháng 7 2021

\(=x^4+2x^2+1-\left(\sqrt{2}x\right)^2\)

\(=\left(x^2+1\right)^2-\left(\sqrt{2}x\right)^2\)

\(=\left(x^2+1-\sqrt{2}x\right)\left(x^2+1+\sqrt{2}x\right)\)

\(x^4+1\)

\(=x^4+2x^2+1-2x^2\)

\(=\left(x^2+1\right)^2-\left(x\sqrt{2}\right)^2\)

\(=\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)\)

11 tháng 8 2015

x3-3x2-4=

12 tháng 8 2018

      \(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+x^2+x+1\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)

  

22 tháng 9 2017

Ta có : x+ x + 1 

= x+ x+ x+ x2 + x + 1 - x4 - x3 - x2 

= (x5 + x+ x3) + (x2 + x + 1) - (x4 + x3 + x2)

= x3(x2 + x + 1) + (x2 + x + 1) - x2(x2 + x + 1) 

= (x2 + x + 1)(x3 - x2 + 1) . 

Ta có : x+ x + 1 

= x+ x+ x+ x2 + x + 1 - x4 - x3 - x2 

= (x5 + x+ x3) + (x2 + x + 1) - (x4 + x3 + x2)

= x3(x2 + x + 1) + (x2 + x + 1) - x2(x2 + x + 1) 

= (x2 + x + 1)(x3 - x2 + 1) .