Bạn nào yêu cầu bài này nhỉ !
So sánh \(A=2^{300}\) Và \(B=3^{200}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
2300 = ( 23 )100 = 8100
3200 = ( 32 )100 = 9100
Vì 8100 < 9100 nên 2300 < 3200
3^-200=3^(-2x100)
2^-300=2^(-3x100)
=2^-300>3^-200
chúc bn học tốt
a, 3^(−200) và 2^(−300)
Ta có :
3^(−200) =(3^−2)^100=(1/9)^100
2^(−300) =(2^−3)^100=(1/8)^100
Do 1/9<1/8 nên 3^(−200) < 2^(−300)
b, 33^52 và 44^39
Ta có :
33^52 = ( 33^4)^13
44^39 = ( 44^3 )^13
33^4 = ( 33 4/3 )^3 = 106^3
106^3 > 44^3 ⇒ ( 33^4)^13 > ( 44^3 )^13 ⇒ 33^52 >44^39
#Học tốt#
a) | - 2 |300và | - 4 | 150
\(\Rightarrow\) | - 2 |300=2300
\(\Rightarrow\)| - 4 | 150=4150=(22)150=2300
\(\Rightarrow\)2300=2300
Vậy | - 2 |300=| - 4 | 150
a) | - 2 |300 = | - 4 | 150
b) | - 2 | 300 < | - 3 | 200
`a)2^{300}=(2^3)^100=8^100`
`3^200=(3^2)^100=9^100`
Vì `9^100>8^100`
`=>2^300<3^200`
`b)3xx24^10`
`=3.(3.8)^10`
`=3^{11}.8^10`
`=3^{11}.2^30`
`2^300=2^{30}.2^{270}`
`=2^{30}.8^{90}`
Vì `3^11<8^90`
`=>3^{11}.2^30<8^{90}.2^30=2^300`
`=>3xx24^{10}<2^300+3^20+4^30`
\(a,2^{24}=\left(2^3\right)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8>8^8\)
\(\Rightarrow3^{16}>2^{24}\)
\(b,2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)
\(\Rightarrow3^{200}>2^{300}\)
b, 2300=23.100=[23]100=8100
3200=32.100=[32]100=9100
=> 8100 < 9100 . Vậy 2300 < 3100
b) \(|-2|^{300}=2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(|-3|^{200}=3^{200}=\left(3^2\right)^{100}=9^{100}\)
Thấy 8<9 => \(8^{100}< 9^{100}\)=> \(|-2|^{300}< |-3|^{200}\)
a) TA CÓ
|-2|300=2300=22*150=(22)150=4150
mà |-4|150=4150
=>bằng nhau
b)TA CÓ
|-2|300=2300=23*100=(23)100=8100
mà |-3|200=3200=32*100=(32)100=9100
=>bé hơn
Ta có:
2300=(23)100=8100
3200=(32)100=9100
Vì 8<9 nên 8100<9100
Vậy 2300<3200
Suy ra A<B
Ta có:
\(A=2^{300}\)\(=\left(2^3\right)^{100}\)\(=8^{100}\)
\(B=3^{200}\)\(=\)\(\left(3^2\right)^{100}\)\(=9^{100}\)
Vì \(8^{100}< 9^{100}\)nên \(A< B\)