Thu gọn và tìm bậc của đa thức sau:
\(\frac{1}{5}xy\left(x+y\right)-2\left(y^3x-xy\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(-\frac{1}{3}xy^2\right)\cdot\left(-3x^3y^2\right)=x^4y^4\)
hệ số là 1, bậc 4
a) \(B=-\frac{1}{2}x^3y\left(-2xy^2\right)^2\)
\(B=\left(-\frac{1}{2}.-2\right).\left(x^3.x\right)\left(y.y^2\right)^2\)
\(B=1x^4y^5\)
Hệ số: 1
Bậc: 9
Chưa định hình phần b) nó là như nào
\(=4x^3y^5z^3\) bậc của đơn thức này là:11
HT
Ta có đơn thức:
\(\left(20x\right).\left(xy^2\right).\frac{1}{5}\)\(xy^3z^3\)
\(=\left(20.\frac{1}{5}\right)\left(xxx\right)\left(y^3y^3\right)z^3\)
\(=4x^3y^5z^3\)
+ Hệ số : \(4\)
+ Phần biến : \(x^3y^5z^3\)
+ Bậc của đa thức : \(3+5+3=11\)
a) \(\left(4x^4-8x^2y^2+12x^5y\right):\left(-4x^2\right)\)
\(=4x^4:-4x^2-8x^2y^2:-4x^2+12x^4y:-4x^2\)
\(=-x^2+2y^2-3x^2y\)
b) \(x^2\left(x-y^2\right)-xy\left(1-xy\right)-x^3\)
\(=x^3-x^2y^2-xy+x^2y^2-x^3\)
\(=-xy\)
\(\frac{1}{5}xy\left(x+y\right)-2\left(y^3x-xy\right)^2\)
\(=\frac{1}{5}x^2y+\frac{1}{5}xy^2-2\left(y^6x^2-2y^4x^2+x^2y^2\right)\)
\(=\frac{1}{5}x^2y+\frac{1}{5}xy^2-2y^6x^2+4y^4x^2-2x^2y^2\)
\(\Rightarrow\)đây là đa thức bậc 6