tim x thuộc N
a 2+4+6+...+2x=210
b 1+3+5+...+[2x-1]=225
c 1+2+3+...+x=278
d 1+3+5+...+[2x-1]=169
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn.
1: =>x+1/2=0 hoặc 2/3-2x=0
=>x=-1/2 hoặc x=1/3
2: =>7/6x=5/2:3,75=2/3
=>x=2/3:7/6=2/3*6/7=12/21=4/7
3: =>2x-3=0 hoặc 6-2x=0
=>x=3 hoặc x=3/2
4: =>-5x-1-1/2x+1/3=3/2x-5/6
=>-11/2x-3/2x=-5/6-1/3+1
=>-7x=-1/6
=>x=1/42
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
Bài 1:
- \(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)
- \(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1
-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)
- \(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)
\(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))
\(x\) = \(\dfrac{3}{14}\)
Vậy \(x=\dfrac{3}{14}\)
Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1
2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)
- 5\(x\) = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\)
- 5\(x\) = \(\dfrac{7}{6}\)
\(x\) = \(\dfrac{7}{6}\) : (- 5)
\(x\) = - \(\dfrac{7}{30}\)
Vậy \(x=-\dfrac{7}{30}\)
bài này bạn nhân lần lượt ra, cuối cùng hết giá trị của x, cò lại số tự nhiên. vậy là đã cm được biểu thức k phụ thuộc vào giá trị của biến rồi đó.
VD:
\(\left(x-3\right)\left(x^2+3x+9\right)-x^3+7\)
\(=x^3+3x^2+9x-3x^2-9x-27-x^3+7\)
\(=-20\)
`#3107.101107`
\(x(x+5)(x-5) - (x+2)(x^2-2x+4)=5\)
`<=> x(x^2 - 25) - (x^3 + 2^3) = 5`
`<=> x^3 - 25x - x^3 - 8 = 5`
`<=> -25x - 8 = 5`
`<=> -25x = 13`
`<=> x = -13/25`
Vậy, `x = -13/25`
_____
\((x+1)^3 - (x-1)^3 -6(x-1)^2 = -19\)
`<=> x^3 + 3x^2 + 3x + 1 - (x^3 - 3x^2 + 3x - 1) - 6(x^2 - 2x + 1) = -19`
`<=> x^3 + 3x^2 + 3x + 1 - x^3 + 3x^2 - 3x + 1 - 6x^2 + 12x - 6 = -19`
`<=> (x^3 - x^3) + (3x^2 + 3x^2 - 6x^2) + (3x - 3x + 12x) + (1 + 1 - 6) = -19`
`<=> 12x - 4 = -19`
`<=> 12x = -15`
`<=> x = -15/12 = -5/4`
Vậy, `x = -5/4.`
________
`@` Sử dụng các hđt:
`1)` `A^2 + B^2 = (A - B)(A + B)`
`2)` `A^3 + B^3 = (A + B)(A^2 - AB + B^2)`
`3)` `(A - B)^3 = A^3 - 3A^2B + 3AB^2 - B^3`
`4)` `(A + B)^3 = A^3 + 3A^2B + 3AB^2 + B^3`
`5)` `(A - B)^2 = A^2 - 2AB + B^2.`
a: \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=5\)
=>\(x\left(x^2-25\right)-x^3-8=5\)
=>\(x^3-25x-x^3-8=5\)
=>-25x=13
=>\(x=-\dfrac{13}{25}\)
b: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-19\)
=>\(x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-19\)
=>\(6x^2+2-6x^2+12x-6=-19\)
=>12x-4=-19
=>12x=-15
=>x=-5/4