để chuẩn bị thi một sinh viên được cho hai tập câu hỏi để ôn tập mỗi tập gồm 10 câu. Giả sử trước khi thi anh ta học thuộc 9 câu của tập 1 và 8 câu ở tập 2. Để thi gồm 3 câu thiết kế như sau: Chọn ngẫu nhiên một tập câu hỏi rồi ngẫu nhiên chọn 2 câu . Câu thứ 3 chọn ngẫu nhiên từ tập còn lại. Tính xác suất để sinh viên trả lời đúng 2 câu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số cách chọn 2 trong 20 câu lí thuyết là: \(C_{20}^2\)
Số cách chọn ra 3 trong 40 câu bài tập là: \(C_{40}^3\)
=> Số cách lập đề thi gồm 5 câu hỏi như trên là: \(C_{20}^2.C_{40}^3 = 1877200\)
Đáp án A
Ta xét 2 trường hợp:
TH1: Đề thi có 9 câu hỏi nằm trong 25 câu mà học sinh nắm được ⇒ P 1 = C 25 9 . C 5 1 C 30 10
TH2: Đề thi có 10 câu hỏi nằm trong 25 câu mà học sinh nắm được ⇒ P 2 = C 25 10 C 30 10
Vậy xác suất cần tính là P = P 1 + P 2 = 0 , 449
Đáp án A
Ta xét 2 trường hợp
TH1:
Đề thi có 9 câu hỏi nằm trong 25 câu mà học sinh nắm được
TH2:
Đề thi có 10 câu hỏi nằm trong 25 câu mà học sinh nắm được
Vậy xác suất cần tính là
Chọn đáp án C.
* TH1: Đề thi gồm 1 câu lý thuyết và 2 câu bài tập
Số cách tạo đề thi: C 4 1 . C 6 2 cách
* TH2: Đề thi gồm 2 câu lý thuyết và 1 câu bài tập
Số cách tạo đề thi: C 4 2 . C 6 1 cách
* KL: Số cách tạo đề thi: C 4 1 . C 6 2 + C 4 2 . C 6 1 = 96 cách
Phương pháp
Sử dụng quy tắc cộng để làm bài toán.
Cách giải
Để chọn được 3 câu hỏi trong đó có ít nhất 1 câu lý thuyết và 1 câu bài tập ta chia thành 2 TH:
TH1: Chọn 1 câu lý thuyết và 2 câu bài tập có: C 4 1 . C 6 2 cách chọn.
TH2: Chọn 2 câu lý thuyết và 1 câu bài tập có: C 4 2 . C 6 1 cách chọn.
Như vậy có: C 4 1 . C 6 2 + C 4 2 . C 6 1 = 96 cách chọn.
Chọn C.
Ít nhất 1 câu hình học, nhiều nhất là 3 câu hình học, bởi giới hạn chỉ được bốc 3 câu hỏi
Khong gian mau: \(n\left(\Omega\right)=C^3_{15}\)
TH1: Bốc 1 câu hình học và 2 câu đại số
\(C^1_5.C^2_{10}\)
TH2: Bốc 2 câu hình học và 1 câu đại số
\(C^2_5.C^1_{10}\)
TH3: Bốc 3 câu hình học
\(C^3_5\)
\(\Rightarrow C^1_5.C^2_{10}+C^2_5.C^1_{10}+C^3_5=..\)
\(p\left(A\right)=\dfrac{C^1_5.C^2_{10}+C^2_5.C^1_{10}+C^3_5}{C^3_{15}}=...\)
Ω: "Chọn 3 câu hỏi từ 15 câu."
⇒ n(Ω) = \(C^3_{15}=455\)
A: "Chọn được ít nhất 1 câu hỏi Hình học."
⇒ \(\overline{A}\): "Không chọn được câu Hình học nào."
\(\Rightarrow n\left(\overline{A}\right)=C^3_{10}=120\)
\(\Rightarrow P\left(\overline{A}\right)=\dfrac{120}{455}=\dfrac{24}{91}\)
\(\Rightarrow P\left(A\right)=1-P\left(\overline{A}\right)=\dfrac{67}{91}\)
Bạn tham khảo nhé!