Tìm điều kiện xác định
\(\sqrt{\left(2x-1\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: ĐKXĐ: 2-3x>=0
=>x<=2/3
2: ĐKXĐ: -3x^2>=0
=>x^2<=0
=>x=0
3: ĐKXĐ: -2023x^3>=0
=>x^3<=0
=>x<=0
4: ĐKXĐ: -2(x-5)>=0
=>x-5<=0
=>x<=5
5: ĐKXĐ: -5/2-2x>=0
=>2-2x<0
=>2x>2
=>x>1
6: ĐKXĐ: (x^2+1)(3-2x)>=0
=>3-2x>=0
=>-2x>=-3
=>x<=3/2
7: ĐKXĐ: (-x^2-1)(3-x)>=0
=>(x^2+1)(x-3)>=0
=>x-3>=0
=>x>=3
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;0\right\}\end{matrix}\right.\)
Sửa đề: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)
Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}\)
\(=\dfrac{x-1}{\sqrt{x}}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)
ĐKXĐ : \(1-x>0\Rightarrow x<1\) và \(1+x>0\Rightarrow x>-1\)
Vậy -1 < x < 1
điều kiện xác định :
\(\hept{\begin{cases}x\left(x-1\right)\ge0\\x\left(x+2\right)\ge0\\x^2\ge0\end{cases}}\) với \(x\left(x-1\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\le0\end{cases}}\)
với \(x\left(x+2\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\ge0\\x\le-2\end{cases}}\) còn \(x^2\ge0\) luôn đúng
Kết hợp điều kiện ta có :
\(\orbr{\begin{cases}x\le-2\\x\ge1\end{cases}}\) hoặc \(x=0\)
ĐKXĐ: \(\left(2x-1\right)^2\ge0\)
<=> \(x\in R\)