K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7

`a)` Ptr `BC:{(x=1+t),(y=2+t),(z=4+t):}`

Ta có: `n_[AH]=u_[BC]=(1;1;1)`

  `=>` Ptr `AH: x+y+z-13=0`

Thay ptr `BC` vào `AH` ta có điểm `H` là: `(3;4;6)`

`b)AB=|\vec{AB}|=\sqrt{38}`

  `AC=|\vec{AC}|=\sqrt{29}`

`c)BC=|\vec{BC}|=\sqrt{3}`

`=>\hat{A}=cos^[-1]([AB^2+AC^2-BC^2]/[2AB.AC])=15^o 25'`

6 tháng 7

1231235544567+136446445533367-23658446777

15 tháng 11 2021

Giống mình làm

 

4 tháng 7 2017

Ta có:  cosC =   a 2 + ​ b 2 − c 2 2 a b = 6 2 + ​ 7 2 − 10 2 2.6.7 < 0

⇒ ​ C ^ > 90 0

Suy ra, tam giác ABC là tam giác tù.

Chọn B

16 tháng 4 2017

Nửa chu vi của tam giác ABC là:    p = 5 + 6 + 7 2 = 9

Áp dụng công  thức Hê- rông, diện tích tam giác ABC là: 

  S = 9. 9 − 5 . 9 − 6 . 9 − 7 = 36.6 = 6 6 .

Chọn C.

30 tháng 3 2017

a. Do BC > AC > AB ⇒ ∠A > ∠B > ∠C

Ta có AB2 + AC2 = 62 + 82 = 100 = 102 = BC2

Vậy tam giác ABC vuông tại A (1 điểm)

Đề sai rồi bạn

7 tháng 3 2022

tui vẽ hoài chẳng ra luôn

19 tháng 10 2023

Câu 1:

Chú ý độ dài 3 cạnh của tam giác là sai thì \(a+b=7=c\) 

Nếu là cạnh của tam giác thì: \(\left\{{}\begin{matrix}a+b>c\\a+c>b\\c+b>a\end{matrix}\right.\) 

Câu 2: Ta có: 

\(m_a=\sqrt{\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}}=\sqrt{\dfrac{AC^2+AB^2}{2}-\dfrac{BC^2}{4}}\)

\(\Rightarrow m_a=\sqrt{\dfrac{9^2+4^2}{2}-\dfrac{6^2}{4}}\)

\(\Rightarrow m_a\approx6,3\) 

Ta có: \(p=\dfrac{AB+AC+BC}{2}=\dfrac{4+6+9}{2}=\dfrac{19}{2}\)

\(\Rightarrow S_{ABC}=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\sqrt{\dfrac{19}{2}\cdot\left(\dfrac{19}{2}-6\right)\cdot\left(\dfrac{19}{2}-9\right)\cdot\left(\dfrac{19}{2}-4\right)}\approx9,5\) 

\(\Rightarrow h_b=2\cdot\dfrac{S_{ABC}}{b}\Rightarrow h_b=2\cdot\dfrac{9,5}{9}\approx2,1\) 

20 tháng 10 2023

còn lại là lấy hb cộng với ma thôi hả bạn 

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Áp dụng định lí cosin trong tam giác ABC ta có:

\(B{C^2} = A{C^2} + A{B^2} - 2.AC.AB.\cos A\)

\( \Rightarrow \cos A = \frac{{A{C^2} + A{B^2} - B{C^2}}}{{2.AB.AC}} = \frac{{{7^2} + {6^2} - {8^2}}}{{2.7.6}} = \frac{1}{4}\)

Lại có: \({\sin ^2}A + {\cos ^2}A = 1 \Rightarrow \sin A = \sqrt {1 - {{\cos }^2}A} \)(do \({0^o} < A \le {90^o}\))

\( \Rightarrow \sin A = \sqrt {1 - {{\left( {\frac{1}{4}} \right)}^2}}  = \frac{{\sqrt {15} }}{4}\)

Áp dụng định lí sin trong tam giác ABC ta có:\(\frac{{BC}}{{\sin A}} = 2R\)

\( \Rightarrow R = \frac{{BC}}{{2.\sin A}} = \frac{8}{{2.\frac{{\sqrt {15} }}{4}}} = \frac{{16\sqrt {15} }}{{15}}.\)

Vậy \(\cos A = \frac{1}{4};\)\(\sin A = \frac{{\sqrt {15} }}{4};\)\(R = \frac{{16\sqrt {15} }}{{15}}.\)