K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2023

Chiều cao hình thang ABCD là:

\(96\times2:48=4\left(cm\right)\)

Diện tích tam giác ABC là:

\(27\times4:2=54\left(cm^2\right)\)

13 tháng 6 2023

NỐI B VỚI D

4 tháng 6 2021

\(BC=BH+HC=75+96=171\)

Áp dụng định lý Pytago trong tam giác vuông ABC : 

\(AC=\sqrt{BC^2-AB^2}=\sqrt{171^2-85^2}=16\sqrt{86}\)

Áp dụng HTL trong tam giác vuông ABC : 

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{85\cdot16\sqrt{86}}{171}=\dfrac{1360\sqrt{86}}{171}\)

 

4 tháng 6 2021

Em xem lại đề nhé , còn cách làm a đúng rồi ấy.

2 tháng 2 2019

a) Đúng

b) Sai

c) Đúng

27 tháng 9 2021

a) Đ

b) S

c) Đ

18 tháng 2 2016

đề sai sao ABC=4cm được cm là đơn vị cạnh mà bạn để góc ??? ko hỉu dc 

NV
27 tháng 4 2019

Để giá trị của giới hạn là một số thực xác định thì biểu thức trên tử số ít nhất phải có nghiệm kép \(x=1\)

Đặt \(f\left(x\right)=\sqrt{3x-2}+\sqrt[3]{3x+5}+ax+b\)

\(f\left(1\right)=a+b+3=0\Rightarrow b=-3-a\)

Thay ngược lại vào \(f\left(x\right)\)

\(f\left(x\right)=\sqrt{3x-2}+\sqrt[3]{3x+5}+ax-3-a\)

\(f\left(x\right)=\frac{3\left(x-1\right)}{\sqrt{3x-2}+1}+\frac{3\left(x-1\right)}{\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4}+a\left(x-1\right)\)

\(f\left(x\right)=\left(x-1\right)\left(\frac{3}{\sqrt{3x-2}+1}+\frac{3}{\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4}+a\right)\)

\(\Rightarrow\) Để \(f\left(x\right)\) có nghiệm kép \(x=1\) thì

\(g\left(x\right)=\frac{3}{\sqrt{3x-2}+1}+\frac{3}{\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4}+a\) có ít nhất một nghiệm \(x=1\)

\(g\left(1\right)=\frac{3}{2}+\frac{3}{4+4+4}+a=0\Rightarrow a=-\frac{7}{4}\Rightarrow b=-\frac{5}{4}\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\frac{\sqrt{3x-2}+\sqrt[3]{3x+5}-\frac{7}{4}x-\frac{5}{4}}{x^2-2x+1}=-\frac{37}{32}\)

\(\Rightarrow P=\frac{-\frac{7}{4}-\frac{5}{4}}{-\frac{37}{32}}=\frac{96}{37}\)

NV
28 tháng 4 2019

Chỉ cần viết tử số thôi nhé, ta quy đồng 4 lên rồi đưa 4 xuông mẫu, sau đó tách tử số thành

\(\frac{1}{4}\left(4\sqrt{3x-2}-2\left(3x-1\right)+4\sqrt[3]{3x+5}-\left(x+7\right)\right)\)

\(=\frac{1}{4}\left(\frac{2\left[4\left(3x-2\right)-\left(3x-1\right)^2\right]}{2\sqrt{3x-2}+3x-1}+\frac{4^3\left(3x+5\right)-\left(x+7\right)^3}{16\sqrt[3]{\left(3x+5\right)^2}+4\sqrt[3]{3x+5}\left(x+7\right)+\left(x+7\right)^2}\right)\)

\(=\frac{1}{4}\left(\frac{2\left(18x-9x^2-9\right)}{2\sqrt{3x-2}+3x-1}+\frac{45x-x^3-21x^2-23}{16\sqrt[3]{\left(3x+5\right)^2}+4\sqrt[3]{3x+5}\left(x+7\right)+\left(x+7\right)^2}\right)\)

\(=\frac{1}{4}\left(\frac{-18\left(x^2-2x+1\right)}{2\sqrt{3x-2}+3x-1}+\frac{-\left(x+23\right)\left(x^2-2x+1\right)}{16\sqrt[3]{\left(3x+5\right)^2}+4\sqrt[3]{3x+5}\left(x+7\right)+\left(x+7\right)^2}\right)\)

\(=\frac{\left(x^2-2x+1\right)}{4}\left(\frac{-18}{2\sqrt{3x-2}+3x-1}-\frac{x+23}{16\sqrt[3]{\left(3x+5\right)^2}+4\sqrt[3]{3x+5}\left(x+7\right)+\left(x+7\right)^2}\right)\)

Rút gọn \(x^2-2x+1\) với mẫu số và thay \(x=1\) vào