abc +96=a+b+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chiều cao hình thang ABCD là:
\(96\times2:48=4\left(cm\right)\)
Diện tích tam giác ABC là:
\(27\times4:2=54\left(cm^2\right)\)
\(BC=BH+HC=75+96=171\)
Áp dụng định lý Pytago trong tam giác vuông ABC :
\(AC=\sqrt{BC^2-AB^2}=\sqrt{171^2-85^2}=16\sqrt{86}\)
Áp dụng HTL trong tam giác vuông ABC :
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{85\cdot16\sqrt{86}}{171}=\dfrac{1360\sqrt{86}}{171}\)
đề sai sao ABC=4cm được cm là đơn vị cạnh mà bạn để góc ??? ko hỉu dc
Để giá trị của giới hạn là một số thực xác định thì biểu thức trên tử số ít nhất phải có nghiệm kép \(x=1\)
Đặt \(f\left(x\right)=\sqrt{3x-2}+\sqrt[3]{3x+5}+ax+b\)
\(f\left(1\right)=a+b+3=0\Rightarrow b=-3-a\)
Thay ngược lại vào \(f\left(x\right)\)
\(f\left(x\right)=\sqrt{3x-2}+\sqrt[3]{3x+5}+ax-3-a\)
\(f\left(x\right)=\frac{3\left(x-1\right)}{\sqrt{3x-2}+1}+\frac{3\left(x-1\right)}{\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4}+a\left(x-1\right)\)
\(f\left(x\right)=\left(x-1\right)\left(\frac{3}{\sqrt{3x-2}+1}+\frac{3}{\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4}+a\right)\)
\(\Rightarrow\) Để \(f\left(x\right)\) có nghiệm kép \(x=1\) thì
\(g\left(x\right)=\frac{3}{\sqrt{3x-2}+1}+\frac{3}{\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4}+a\) có ít nhất một nghiệm \(x=1\)
\(g\left(1\right)=\frac{3}{2}+\frac{3}{4+4+4}+a=0\Rightarrow a=-\frac{7}{4}\Rightarrow b=-\frac{5}{4}\)
\(\Rightarrow\lim\limits_{x\rightarrow1}\frac{\sqrt{3x-2}+\sqrt[3]{3x+5}-\frac{7}{4}x-\frac{5}{4}}{x^2-2x+1}=-\frac{37}{32}\)
\(\Rightarrow P=\frac{-\frac{7}{4}-\frac{5}{4}}{-\frac{37}{32}}=\frac{96}{37}\)
Chỉ cần viết tử số thôi nhé, ta quy đồng 4 lên rồi đưa 4 xuông mẫu, sau đó tách tử số thành
\(\frac{1}{4}\left(4\sqrt{3x-2}-2\left(3x-1\right)+4\sqrt[3]{3x+5}-\left(x+7\right)\right)\)
\(=\frac{1}{4}\left(\frac{2\left[4\left(3x-2\right)-\left(3x-1\right)^2\right]}{2\sqrt{3x-2}+3x-1}+\frac{4^3\left(3x+5\right)-\left(x+7\right)^3}{16\sqrt[3]{\left(3x+5\right)^2}+4\sqrt[3]{3x+5}\left(x+7\right)+\left(x+7\right)^2}\right)\)
\(=\frac{1}{4}\left(\frac{2\left(18x-9x^2-9\right)}{2\sqrt{3x-2}+3x-1}+\frac{45x-x^3-21x^2-23}{16\sqrt[3]{\left(3x+5\right)^2}+4\sqrt[3]{3x+5}\left(x+7\right)+\left(x+7\right)^2}\right)\)
\(=\frac{1}{4}\left(\frac{-18\left(x^2-2x+1\right)}{2\sqrt{3x-2}+3x-1}+\frac{-\left(x+23\right)\left(x^2-2x+1\right)}{16\sqrt[3]{\left(3x+5\right)^2}+4\sqrt[3]{3x+5}\left(x+7\right)+\left(x+7\right)^2}\right)\)
\(=\frac{\left(x^2-2x+1\right)}{4}\left(\frac{-18}{2\sqrt{3x-2}+3x-1}-\frac{x+23}{16\sqrt[3]{\left(3x+5\right)^2}+4\sqrt[3]{3x+5}\left(x+7\right)+\left(x+7\right)^2}\right)\)
Rút gọn \(x^2-2x+1\) với mẫu số và thay \(x=1\) vào