Tìm các số tự nhiên \(n\)biết \(n+S\left(n\right)=2016.\)
\(S\left(n\right)\)là tổng các số của \(n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm các số tự nhiên \(n\)biết \(n+S\left(n\right)=2016.\)
\(S\left(n\right)\)là tổng các số của \(n\)
mik sửa hộ cô Linh Chi lại dòng thứ 8 nha:
\(40+a+4+a+4+a=60\)
\(\Rightarrow3a=12\)
\(\Rightarrow a=4\)
\(\Rightarrow n=40+4=44\)
Các bạn bổ sung n=44 nữa nha!
Bạn xem bài làm ở đây:
https://olm.vn/hoi-dap/detail/40718880788.html
Học tốt
2. Ta có: n + S ( n ) + S ( S (n) ) = 60
Có: n \(\ge\)S ( n ) \(\ge\)S ( S (n) )
=> n + n + n \(\ge\)n + S ( n ) + S ( S (n) ) \(\ge\)60
=> 3n \(\ge\)60
=> n \(\ge\)20
=> 20 \(\le\)n \(\le\)60
Đặt: n = \(\overline{ab}\)
=> \(2\le a\le6\)
và \(2+0\le a+b\le5+9\)
=> \(2\le a+b\le14\)
a + b | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
\(\overline{ab}\) | 56 | 54 | 52 | 50 | 48 | 46 | 44 | 42 | 40 | 47 | 45 | 43 | 41 |
loại | loại | loại | tm | loại | loại | tm | loại | loại | tm | loại | loại | loại |
Vậy n = 50; n = 44 hoặc n = 47
1. Ta có: a + 3c = 2016 ; a + 2b = 2017
=> a + 3c + a + 2b = 2016 + 2017
=> 2a + 2b + 2c + c = 4033
=> 2 ( a + b + c ) = 4033 - c
mà a, b, c không âm
=> c \(\ge\)0
Để P = a + b + c đạt giá trị lớn nhất
<=> 2 ( a + b + c ) đạt giá trị lớn nhất
<=> 4033 - c đạt giá trị lớn nhất
<=> c đạt giá trị bé nhất
=> c = 0
=> a = 2016 ; b = ( 2017 - 2016 ) : 2 = 1/2
Vậy max P = 0 + 2016 + 1/2 = 4033/2
rõ ràng rằng : \(n\ge S\left(n\right)\text{ với mọi số tự nhiên n}\)
nên ta có : \(2014=n+S\left(n\right)\le n+n=2n\text{ hay }n\ge\frac{2014}{2}=1007\)
mà \(n\le n+S\left(n\right)=2014\)thế nên chắc chắc rằng n là số tự nhiên có 4 chữ số, nằm trong đoạn từ 1007 đến 2014.
vì thế S(n) là tổng của 4 chữ số nên \(S\left(n\right)\le9\times4=36\Rightarrow n\ge2014-36=1978\)nên nằm trong đoạn từ 1978 đến 2014.
Gọi n có dạng \(\overline{abcd}\) dựa vào điều kiện ở trên thì a chỉ có thể bằng 1 hoặc 2
với \(a=1\Rightarrow b=9\Rightarrow\hept{\begin{cases}c\ge7\\\overline{abcd}+a+b+c+d=2014\end{cases}}\Leftrightarrow\hept{\begin{cases}c\ge7\\11\times c+2\times d=104\end{cases}\Leftrightarrow\hept{\begin{cases}c=8\\d=8\end{cases}}}\)
Vậy ta thu được số \(1988\text{ thỏa mãn đề bài}\)
Với \(a=2\Rightarrow b=0\Rightarrow\hept{\begin{cases}c\le1\\\overline{20cd}+2+0+c+d=2014\end{cases}}\Leftrightarrow\hept{\begin{cases}c\le1\\11\times c+2\times d=12\end{cases}\Leftrightarrow\hept{\begin{cases}c=0\\d=6\end{cases}}}\)
vậy ta thu được số \(2006\text{ cũng thỏa mãn đề bài}\)
Ta thấy :
• n<3 chữ số:999+(9+9+9)<2016=> n>3 chữ số
• n>5 chữ số: 9999+(9+9+9+9)>2016
=> n có 4 chữ số
Khi n có 4 chữ số ta có \(2016-36\le n\le2016=>1980\le n\le2016\)
=> n có dạng 19ab và 20cd
• TH1: n=19ab
Ta có: 19ab +1+9+a+b=2016
=> 1900+1+9+11a+2b=2016
=> 1910+11a+2b=2016
=> 11a+2b=106
Vì 2b chẵn, 106 chẵn => 11a là số chẵn
=> a là số chẵn
Mà a < 10 và n >= 1980
=> 11a=88 => a=8 => b=9
Ta có số 1989
•TH2: n=20cd
Ta có 20cd +2+c+d=2016
=> 2002+11c+2d=2016
=> 11c+2d=14
Ta thấy 2d chẵn, 14 chẵn => 11c chẵn => c chẵn
Và 11c<14 => c=0 => d=7
Ta có số 2007
Vậy n=1989; n=2007