K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 5 2020

- Nếu một trong các số a;b;c bằng 0, giả sử là a

\(\Rightarrow bc=0\Rightarrow\left\{{}\begin{matrix}b=0\\c=\frac{1}{2017}\end{matrix}\right.\)

\(\Rightarrow A=\frac{1}{2017^{2017}}\)

- Nếu a;b;c đều khác 0

\(ab+bc+ca=2017abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2017\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2017\\\frac{1}{a+b+c}=2017\end{matrix}\right.\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{ab+bc+ca+c^2}{abc\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\Rightarrow\left[{}\begin{matrix}a=-b;c=\frac{1}{2017}\\b=-c;a=\frac{1}{2017}\\c=-a;b=\frac{1}{2017}\end{matrix}\right.\)

\(\Rightarrow A=\frac{1}{2017^{2017}}\)

Như vậy trong mọi trường hợp ta luôn có \(A=\frac{1}{2017^{2017}}\)

2 tháng 9 2017

help

25 tháng 4 2018

mk nhầm đề bài là: a^2017+b^2017=2a^2018.b^2018

17 tháng 9 2023

Ta có: \(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(c+a\right)\)

Tương tự: \(\left\{{}\begin{matrix}b^2+1=\left(a+b\right)\left(b+c\right)\\c^2+1=\left(c+a\right)\left(b+c\right)\end{matrix}\right.\)

=> \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Mặt khác: \(a+b+c-abc=a\left(1-bc\right)+b+c\)

                \(=a\left(ab+ca\right)+b+c\)     (Vì ab+bc+ca=1)

               \(=\left(a^2+1\right)\left(b+c\right)\)

               \(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)    (Vì \(a^2+1=\left(a+b\right)\left(c+a\right)\))

\(T=1\)

19 tháng 1 2019

Giả sử 2017 số a1 - b1, a2 - b2,..., a2017 - b2017 là các số lẻ.

Khi đó (a1 - b1) + (a2 - b2) + ... + (a2017 - b2017) = (a1 + a2 + ... + a2017) - (b1 + b2 + ... + b2017) là số lẻ. (1)

Lại có theo đề bài b1, b2,..., b2017 là 1 hoán vị của các số a1, a2,..., a2017 nên (a1 + a2 + ... + a2017) - (b1 + b2 + ... + b2017) = 0. (2)

Ta thấy (1) trái với (2). Do đó giả sử sai.

Suy ra trong 2017 số a1 - b1, a2 - b2,..., a2017 - b2017 có một số chẵn, do đó tích chúng là số chẵn.

Vậy ta có đpcm

20 tháng 1 2019

Đặng Quốc Huy mk cx chưa pải là thần đồng. Bạn shitbo cx giỏi bằng mk đó, cùng lp vs mk mà