tìm MIN A=\(\frac{5a^2+3}{\sqrt{2a^2+1}}\)
Giúp mk với đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\ge0\)
\(\frac{2}{2a-1}\sqrt{5a^2}\left(1-4a+4a^2\right)=\frac{2}{2a-1}\sqrt{5a^2}\left(1-2a\right)^2=\frac{2}{2a-1}\sqrt{5a^2}\left(2a-1\right)^2\)
\(=2a\sqrt{5}\left(2a-1\right)\)
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{5a}{5}=\frac{2b}{4}=\frac{8c}{24}=\frac{5a+2b+8c}{5+4+24}\)(*)
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{-3a}{-3}=\frac{-4b}{-8}=\frac{6c}{18}=\frac{-3a-4b+6c}{-3-8+18}\)(**)
Lấy (*) chia cho (**) được kết quả: A=\(\frac{7}{33}\)
1) \(ĐK:3-2a>0\Leftrightarrow a< \dfrac{3}{2}\)
2) \(ĐK:2x-5< 0\Leftrightarrow x< \dfrac{5}{2}\)
3) \(ĐK:3-5a< 0\Leftrightarrow a>\dfrac{3}{5}\)
4) \(ĐK:a< 0\)
5) \(ĐK:-a\ge0\Leftrightarrow a\le0\)
\(A=\frac{-7x^2}{\sqrt{x-3}-2}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}\sqrt{x-3}-2\ne0\\x-3>0\end{cases}}\)
\(\sqrt{x-3}-2\ne0\Rightarrow\sqrt{x-3}\ne2\)
\(\Rightarrow x-3\ne4\Leftrightarrow x\ne7\)
\(x-3>0\Leftrightarrow x>3\)
Vậy điều kiện xác định của A là \(\hept{\begin{cases}x>3\\x\ne7\end{cases}}\)
ĐKXĐ:
\(\sqrt{x-3}\ge0\Rightarrow\sqrt{x-3}-2\ge-2\)
\(\Rightarrow x\ge3\)
Mà \(\sqrt{x-3}-2\ne0\) \(\Rightarrow x\ne7\)
Vậy \(x\ge3\) và \(x\ne7\)