K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

a. Ta có: \(\frac{1}{2^2}\)\(\frac{1}{1.3}\)

\(\frac{1}{4^2}\)< 1/(3.5)

1/(6^2) <1/(5.7)

...

1/(2n)^2 < 1/(2n-1)(2n+1)

=> 1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2 < 1/(1.3) +...+1/(2n-1)(2n+1)

=> 2(1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2) < (1/1 - 1/3 +1/3 - 1/5 + 1/5 - 1/7 +...+ 1/(2n-1) - 1/(2n+1)

=>2(1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2) < 1 - 1/(2n+1) = 2n/(2n+1)

=> 1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2 < 2n/(2n+1) . 1/2

Vì 2n/2n+1 < 1 =>  2n/(2n+1) . 1/2 < 1/2

=> 1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2 <1/2

 Câu b tương tự

26 tháng 9

a; A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{\left(2n\right)^2}\) 

A = \(\dfrac{1}{2^2}\).(\(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{n^2}\)

A = \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{n.n}\))

Vì \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\); ...; \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right)n}\)

nên A < \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{\left(n-1\right)n}\))

\(\dfrac{1}{4.}\)(1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\))

\(\dfrac{1}{4}\).(1 + 1 - \(\dfrac{1}{n}\))

\(\dfrac{1}{4}\).(2 - \(\dfrac{1}{n}\))

\(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\) (đpcm)

 

22 tháng 3 2017

1/3^2 + 1/5^2 + 1/7^2 + ... + 1/(2n+1)^2 < 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/(2n-1)(2n+1)
= 1/2(1-1/3+1/3-1/5+1/5-1/7+...+1/(2n-1) - 1/(2n+1)
= 1/2(1-1/(2n+1)
= 1/2 . 2n/(2n+1)
= 2n/2(2n+1).

22 tháng 1 2018

Sao nó ra 1/4

10 tháng 11 2017

1/ Ta có:

\(a^5-a^3+a=2\)

Dễ thấy a = 0 không phải là nghiệm từ đó ta có:

\(a^6-a^4+a^2=2a\)

\(\Rightarrow2a=a^6+a^2-a^4\ge2a^4-a^4\ge a^4\)

\(\Rightarrow\hept{\begin{cases}2a\ge a^4\\a>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\ge a^3\\a>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4\ge a^6\\a>0\end{cases}}\)

Dấu = không xảy ra 

Vậy \(a^6< 4\)

9 tháng 11 2017

Câu 2/

Câu hỏi của XPer Miner - Toán lớp 9 - Học toán với OnlineMath

29 tháng 10 2018

A=4cm,B=6,C=10

Nếu A=4,B=6,C=10 thì A+B+C=4+6+10=20