Giải nhanh cấp tốc ngày mai thi rồi.
CMR
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\) với a;b;c>0
Cần gấp cố gắng nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Áp dụng Cauchy dạng cộng mẫu ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\left(1\right)\)
\(\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\ge\frac{9}{b+2c}\left(2\right)\)
\(\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\ge\frac{9}{c+2a}\left(3\right)\)
Cộng vế 3 bất đẳng thức (1);(2); và (3) ta được:
\(3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
Dấu "=" xảy ra khi: \(a=b=c\)
Học tốt!!!!
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ta được
\(\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2b}\ge\frac{9}{2\left(a+2b\right)}\)
\(\frac{1}{2b}+\frac{1}{2c}+\frac{1}{2c}\ge\frac{9}{2\left(b+2c\right)}\)
\(\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2a}\ge\frac{9}{2\left(c+2a\right)}\)
Cộng các BĐT theo vế :
\(\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{2}\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
Dấu "=" xảy ra khi a = b = c (a,b,c>0)
The BĐT \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\). Thật vậy, ta có:
Áp dụng BĐT Bunhiacopxki, ta có:
\(\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2+\left(\frac{c}{\sqrt{z}}\right)^2\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)
\(\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(x+y+z\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\ge\frac{\left(a+b+c\right)^2}{x+y+z}\). Thay a,b,c bởi 1 , ta được
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{9}{x+y+z}\)
Áp dụng vào ta có: \(3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\ge3.\frac{9}{3a+3b+3c}=3.\frac{9}{3\left(a+b+c\right)}=3.\frac{3}{a+b+c}\)
\(=\frac{9}{a+b+c}\)(1)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{9}{a+b+c}\)(2)
Vì (1) bằng (2) nên ta có đpcm . Dấu = xảy ra khi và chỉ khi a=b=c (a,b,c > 0)
\(\frac{3}{a+2b}=\frac{3}{a+b+b}\le\frac{3}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{2}{b}\right)\)
Tương tự: \(\frac{3}{b+2c}\le\frac{1}{3}\left(\frac{1}{b}+\frac{2}{c}\right)\) ; \(\frac{3}{c+2a}\le\frac{1}{3}\left(\frac{1}{c}+\frac{2}{a}\right)\)
Cộng vế với vế:
\(3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\le\frac{1}{3}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Cauchy-Schwarz dạng Engel 2 lần :
\(P=\frac{1}{a\left(2b+2c-1\right)}+\frac{1}{b\left(2c+2a-1\right)}+\frac{1}{c\left(2a+2b-1\right)}\)
\(P=\frac{1}{a\left(-a+b+c\right)}+\frac{1}{b\left(a-b+c\right)}+\frac{1}{c\left(a+b-c\right)}\)
\(P=\frac{1}{a-2a^2}+\frac{1}{b-2b^2}+\frac{1}{c-2c^2}\ge\frac{9}{\left(a+b+c\right)-2\left(a^2+b^2+c^2\right)}\ge\frac{9}{1-\frac{2}{3}}=\frac{9}{\frac{1}{3}}=27\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
Cách của bạn sao chỗ cuối lại thế ạ ? Bạn giải hộ mình rõ hơn được không ?
Áp dụng bất đẳng thức cơ bản dạng\(\left(x+y\right)^2\ge4xy\), ta được: \(\left(a+2b\right)^2=\left(\frac{2a+b}{2}+\frac{3b}{2}\right)^2\ge4.\frac{2a+b}{2}.\frac{3b}{2}=3b\left(2a+b\right)\)
\(\Rightarrow\frac{2a+b}{a+2b}\le\frac{a+2b}{3b}\Rightarrow\frac{2a+b}{a\left(a+2b\right)}\le\frac{1}{3}\left(\frac{2}{a}+\frac{1}{b}\right)\)
Tương tự, ta có: \(\frac{2b+c}{b\left(b+2c\right)}\le\frac{1}{3}\left(\frac{2}{b}+\frac{1}{c}\right)\); \(\frac{2c+a}{c\left(c+2a\right)}\le\frac{1}{3}\left(\frac{2}{c}+\frac{1}{a}\right)\)
Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2a+b}{a\left(a+2b\right)}+\frac{2b+c}{b\left(b+2c\right)}+\frac{2c+a}{c\left(c+2a\right)}\)
Đẳng thức xảy ra khi a = b = c
Bài 3)
BĐT cần chứng minh tương đương với:
\(\left ( \frac{a}{a+b} \right )^2+\left ( \frac{b}{b+c} \right )^2+\left ( \frac{c}{c+a} \right )^2\geq \frac{1}{2}\left ( 3-\frac{a}{a+b}-\frac{b}{b+c}-\frac{c}{c+a} \right )\)
Để cho gọn, đặt \((x,y,z)=\left (\frac{b}{a},\frac{c}{b},\frac{a}{c}\right)\) \(\Rightarrow xyz=1\).
BĐT được viết lại như sau:
\(A=2\left [ \frac{1}{(x+1)^2}+\frac{1}{(y+1)^2}+\frac{1}{(z+1)^2} \right ]+\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\) \((\star)\)
Ta nhớ đến hai bổ đề khá quen thuộc sau:
Bổ đề 1: Với \(a,b>0\) thì \(\frac{1}{(a+1)^2}+\frac{1}{(b+1)^2}\geq \frac{1}{ab+1}\)
Cách CM rất đơn giản, Cauchy - Schwarz:
\((a+1)^2\leq (a+b)(a+\frac{1}{b})\Rightarrow \frac{1}{(a+1)^2}\geq \frac{b}{(a+b)(ab+1)}\)
Tương tự với biểu thức còn lại và cộng vào thu được đpcm
Bổ đề 2: Với \(x,y>0,xy\geq 1\) thì \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}\)
Cách CM: Quy đồng ta có đpcm.
Do tính hoán vị nên không mất tổng quát giả sử \(z=\min (x,y,z)\)
\(\Rightarrow xy\geq 1\). Áp dụng hai bổ đề trên:
\(A\geq 2\left [ \frac{1}{xy+1}+\frac{1}{(z+1)^2} \right ]+\frac{2}{\sqrt{xy}+1}+\frac{1}{z+1}=2\left [ \frac{z}{z+1}+\frac{1}{(z+1)^2} \right ]+\frac{2\sqrt{z}}{\sqrt{z}+1}+\frac{1}{z+1}\)
\(\Leftrightarrow A\geq \frac{2(z^2+z+1)}{(z+1)^2}+\frac{1}{z+1}+2-\frac{2}{\sqrt{z}+1}\geq 3\)
\(\Leftrightarrow 2\left [ \frac{z^2+z+1}{(z+1)^2}-\frac{3}{4} \right ]+\frac{1}{z+1}-\frac{1}{2}-\left ( \frac{2}{\sqrt{z}+1}-1 \right )\geq 0\)
\(\Leftrightarrow \frac{(z-1)^2}{2(z+1)^2}-\frac{z-1}{2(z+1)}+\frac{z-1}{(\sqrt{z}+1)^2}\geq 0\Leftrightarrow (z-1)\left [ \frac{1}{(\sqrt{z}+1)^2}-\frac{1}{(z+1)^2} \right ]\geq 0\)
\(\Leftrightarrow \frac{\sqrt{z}(\sqrt{z}-1)^2(\sqrt{z}+1)(z+\sqrt{z}+2)}{(\sqrt{z}+1)^2(z+1)^2}\geq 0\) ( luôn đúng với mọi \(z>0\) )
Do đó \((\star)\) được cm. Bài toán hoàn tất.
Dấu bằng xảy ra khi \(a=b=c\)
P/s: Nghỉ tuyển lâu rồi giờ mới gặp mấy bài BĐT phải động não. Khuya rồi nên xin phép làm bài 3 trước. Hai bài kia xin khiếu. Nếu làm đc chắc tối mai sẽ post.
Bài 1:
Cho \(a=b=c=\dfrac{1}{\sqrt{3}}\). Khi đó \(M=\sqrt{3}-2\)
Ta sẽ chứng minh nó là giá trị nhỏ nhất
Thật vậy, đặt c là giá trị nhỏ nhất của a,b,c. Khi đó, ta cần chứng minh
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\frac{2(a^2+b^2+c^2)}{\sqrt{ab+ac+bc}}\geq(\sqrt3-2)\sqrt{ab+ac+bc}\)
\(\Leftrightarrow\sqrt{ab+ac+bc}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\sqrt{3(ab+ac+bc)}\right)\geq2(a^2+b^2+c^2-ab-ac-bc)\)
\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{a}-a-b+\frac{b^2}{c}+\frac{c^2}{a}-\frac{b^2}{a}-c+a+b+c-\sqrt{3(ab+ac+bc)}\geq\)
\(\geq2((a-b)^2+(c-a)(c-b))\)
\(\Leftrightarrow(a-b)^2\left(\frac{1}{a}+\frac{1}{b}-2\right)+(c-a)(c-b)\left(\frac{1}{a}+\frac{b}{ac}-2\right)+a+b+c-\sqrt{3(ab+ac+bc)}\geq0\)
Đúng bởi \(\frac{1}{a}+\frac{1}{b}-2>0;\frac{1}{a}+\frac{b}{ac}-2\geq\frac{1}{a}+\frac{1}{a}-2>0\) và
\(a+b+c-\sqrt{3(ab+ac+bc)}=\frac{(a-b)^2+(c-a)(c-b)}{a+b+c+\sqrt{3(ab+ac+bc)}}\geq0\)
BĐT đã được c/m. Vậy \(M_{Min}=\sqrt{3}-2\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)
P/s: Nhìn qua thấy ngon mà làm mới thấy thật sự là "choáng"
Xin chào, bạn theo dõi lời giải của mình nhé
Áp dụng BĐT Holder và BĐT AM-GM ta có:
\(VT=\left(2a+\frac{1}{b}+\frac{1}{c}\right)\left(2b+\frac{1}{c}+\frac{1}{a}\right)\left(2c+\frac{1}{a}+\frac{1}{b}\right)\)
\(\ge\left(\sqrt[3]{2a\cdot2b\cdot2c}+\sqrt[3]{\frac{1}{b}\cdot\frac{1}{c}\cdot\frac{1}{a}}+\sqrt[3]{\frac{1}{c}\cdot\frac{1}{a}\cdot\frac{1}{b}}\right)^3\)
\(=\left(2\sqrt[3]{abc}+2\sqrt[3]{\frac{1}{abc}}\right)^3\)\(\ge\left(2\cdot2\sqrt{\sqrt[3]{abc}\cdot\sqrt[3]{\frac{1}{abc}}}\right)^3\)
\(=4^3=64=VP\)
Dấu "=" khi \(a=b=c\)
bạn biết bđt svác sơ chứ nếu không biết có thể lên mạng tra
Áp dụng bđt svác sơ ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b};\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\ge\frac{9}{b+2c};\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\ge\frac{9}{c+2a}\)
cộng vào ta có
\(3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
Thêm câu nữa bạn
Rút gọn
\(P=\frac{x^2}{xy+y^2}+\frac{y^2}{xy-x^2}-\frac{x^2+y^2}{xy}\)