K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2017

=24 nhé

3 tháng 10 2017

Bạn kiểm tra xem ghi đúng đề chưa

9 tháng 6 2021

a, ĐKXĐ: x≠±2

A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right)\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

A=\(\left(\dfrac{x}{x^2-4}-\dfrac{2x+4}{x^2-4}+\dfrac{x-2}{x^2-4}\right)\left(\dfrac{x^2+2x}{x+2}-\dfrac{2x+4}{x+2}+\dfrac{10-x^2}{x+2}\right)\)

A=\(\left(\dfrac{-6}{x^2-4}\right)\left(\dfrac{6}{x+2}\right)\)

A=\(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\)

b, |x|=\(\dfrac{1}{2}\)

TH1z: x≥0 ⇔ x=\(\dfrac{1}{2}\) (TMĐKXĐ)

TH2: x<0 ⇔ x=\(\dfrac{-1}{2}\) (TMĐXĐ)

Thay \(\dfrac{1}{2}\)\(\dfrac{-1}{2}\) vào A ta có:

\(\dfrac{-36}{\left(\dfrac{1}{2}-2\right)\left(\dfrac{1}{2}+2\right)^2}\)=\(\dfrac{96}{25}\)

\(\dfrac{-36}{\left(\dfrac{-1}{2}-2\right)\left(\dfrac{-1}{2}+2\right)^2}\)=\(\dfrac{32}{5}\)

c, A<0 ⇔ \(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\) ⇔ (x-2)(x+2)< 0

⇔   {x-2>0        ⇔      {x>2

     [                           [

       {x+2<0                 {x<2

⇔   {x-2<0        ⇔      {x<2

     [                           [

       {x+2>0                 {x>2

⇔ x<2 

Vậy x<2 (trừ -2)

 

 

 

 

11 tháng 6 2021

mấy dấu ngoặc vuông là sao á bạn, mình không hiểu lắm:((

 

9 tháng 6 2021

a, ĐKXĐ: x≠±3

A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{3-x}{x-3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x^2-3x}{x^2-9}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{-3}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\dfrac{-1}{x^2}\)

b, Thay x=\(-\dfrac{1}{2}\) (TMĐKXĐ) vào A ta có:

\(\dfrac{-1}{\left(-\dfrac{1}{2}\right)^2}\)=-4

c, A<0 ⇔ \(\dfrac{-1}{x^2}< 0\) ⇔ x2>0 (Đúng với mọi x)

Vậy để A<0 thì x đúng với mọi giá trị (trừ ±3)

 

7 tháng 12 2015

Nếu x = -19 => y = -1

Nếu x =-18 => y = -2

....................

Nếu x = -1 =< y =-19

2) x + (-10) = 28 + (-10) = 18

b) -|x| + (-3) = -|-7| + (-3) = -7 + (-3) = -10

 

a) Ta có: \(C=\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\dfrac{1-x^3}{1-x}+x\right)\left(\dfrac{1+x^3}{1+x}-x\right)\right]\)

\(=\dfrac{x\left(x^2-1\right)^2}{x^2+1}:\left[\left(\dfrac{\left(1-x\right)\left(1+x+x^2\right)}{1-x}+x\right)\left(\dfrac{\left(1+x\right)\left(1-x+x^2\right)}{\left(1+x\right)}-x\right)\right]\)

\(=\dfrac{x\left(x^2-1\right)^2}{x^2+1}:\left[\left(x^2+2x+1\right)\left(x^2-2x+1\right)\right]\)

\(=\dfrac{x\left(x-1\right)^2\cdot\left(x+1\right)^2}{\left(x^2+1\right)}\cdot\dfrac{1}{\left(x+1\right)^2\cdot\left(x-1\right)^2}\)

\(=\dfrac{x}{x^2+1}\)

b) Thay \(x=-\dfrac{3}{2}\) vào C, ta được:

\(C=\dfrac{-3}{2}:\left(\dfrac{9}{4}+1\right)=\dfrac{-3}{2}:\dfrac{13}{4}=\dfrac{-3}{2}\cdot\dfrac{4}{13}=\dfrac{-6}{13}\)

c) Ta có: \(C=\dfrac{1}{2}\)

nên \(\dfrac{x}{x^2+1}=\dfrac{1}{2}\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)(Loại)

12 tháng 8 2018

\(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\le0\)

Nhận thấy:  \(\left|2x+1\right|\ge0\);     \(\left|x+y-\frac{1}{2}\right|\ge0\)

=>   \(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\ge0\)

Dấu "=" xảy ra  <=>  \(\hept{\begin{cases}2x+1=0\\x+y-\frac{1}{2}=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)

đến đây bạn thay x,y tìm đc vào A để tính nhé