K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2017

min P=2,5 khi x=1, y= 2.

23 tháng 5 2017

Ta có xy=2 => \(y=\frac{2}{x}\)

ta có : M = \(\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}=\frac{1}{x}+x+\frac{3}{2x+\frac{2}{x}}+\frac{2}{\frac{2}{x}}-x\)\(\left(x+\frac{1}{x}\right)+\frac{3}{2\left(\frac{1}{x}+x\right)}\)

Áp dụng BĐT AM - GM ta được :

\(\ge2\sqrt{\frac{\left(\frac{1}{x}+x\right)3}{\left(\frac{1}{x}+x\right)2}}=2\sqrt{\frac{3}{2}}=\sqrt{6}\)

Dấu "="......

Vậy Min M = \(\sqrt{6}\) Khi ......

============

bấm đi bấm lại 2 lần , máy lỗi , phần tìm x,y bạn tự làm nhé 

=========================

3 tháng 10 2017

mình làm ra rồi khỏi cần giúp nữa

31 tháng 5 2017

ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)

Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)

\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla

5 tháng 12 2018

ĐK: x khác 0

Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)

Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022

29 tháng 1 2019

tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)

Có A = 2016 + xy > 2016 - 6 = 2010 !!!

Được rồi chứ gì -.- 

6 tháng 1 2021

\(3=\left(x^2+\frac{1}{x^2}\right)+\left(x^2+\frac{y^2}{4}\right)\ge2+\left|xy\right|\Rightarrow\left|xy\right|\le1\Rightarrow-1\le xy\le1\Rightarrow Bantulmtiep\)

6 tháng 1 2021

dùng bđt cô si vào phần giả thiết đã cho nhé bạn , mình đang bận không tiện làm . Nếu cần thì tối rảnh mình làm cho

16 tháng 3 2021

\(Q=\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}=\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)

\(=\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)

\(=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)

Áp dụng bất đẳng thức AM-GM ta có :

\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)

\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)

\(Q=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}=\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}=1\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x,y>0\\x=y\\xy=4\end{cases}}\Rightarrow x=y=2\)

Vậy GTNN của Q là 1 <=> x = y = 2

17 tháng 3 2021

Or

\(Q-1=\frac{\left(x^2-y^2\right)^2+2\left(x+y\right)\left(x^2+y^2-8\right)}{4\left(x+2\right)\left(y+2\right)}\ge0\)*đúng do \(x^2+y^2\ge2xy=8\)*

Do đó \(Q\ge1\)

Đẳng thức xảy ra khi x = y = 2

17 tháng 2 2022

Ta có : 2P = \(\frac{\sqrt{4x^2-4xy+4y^2}}{x+y+2z}+\frac{\sqrt{4y^2-4yz+4z^2}}{y+z+2x}+\frac{\sqrt{4z^2-4zx+4x^2}}{z+x+2y}\)

\(=\frac{\sqrt{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}}{x+y+2z}+\frac{\sqrt{\left(2y-z\right)^2+\left(\sqrt{3}z\right)^2}}{y+z+2x}+\frac{\sqrt{\left(2z-x\right)^2+\left(\sqrt{3}x\right)^2}}{z+x+2y}\)

Lại có  \(\frac{\sqrt{\left[\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2\right]\left[\left(1^2+\left(\sqrt{3}\right)^2\right)\right]}}{x+y+2z}\ge\frac{\left[\left(2x-y\right).1+3y\right]}{x+y+2z}=\frac{2\left(x+y\right)}{x+y+2z}\)

=> \(\sqrt{\frac{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}{x+y+2z}}\ge\frac{x+y}{x+y+2z}\)(BĐT Bunyakovsky) 

Tương tự ta đươc \(2P\ge\frac{x+y}{x+y+2z}+\frac{y+z}{2x+y+z}+\frac{z+x}{2y+z+x}\)

Đặt x + y = a ; y + z = b ; x + z = c

Khi đó \(2P\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3\ge\frac{9}{2}-3=\frac{3}{2}\)

=> \(P\ge\frac{3}{4}\)

Dấu "=" xảy ra <=> x = y = z 

16 tháng 2 2022

bài 8 : bỏ dấu hoặc  rồi tính 

a;( 17 - 299) + ( 17 - 25 + 299)