Cho hình thang ABCD, có AB // CD và AB < CD. Gọi M là giao điểm của AD và BC. Gọi H, E, F, G lần lượt là trung điểm của AM, BM, AC, BD. Chứng minh HEFG là hình thang.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEAB và ΔEMD có
góc EAB=góc EMD
góc AEB=góc MED
=>ΔEAB đồng dạng vơi ΔEMD
=>EM/EA=AB/MD=AB/MC
Xet ΔFAB và ΔFCM có
góc FAB=góc FCM
góc AFB=góc CFM
Do đó: ΔFAB đồng dạng với ΔFCM
=>FB/FM=AB/CM
=>FM/FB=CM/AB=DM/AB=ME/EA
=>EF//AB
b: Xet ΔBMC có FN//MC
nên FN/MC=BN/BC
=>FN/MD=AH/AD
Xét ΔADM có HE//DM
nên HE/DM=AH/AD
Xét ΔBDC có EN//DC
nên EN/DC=BN/BC=AH/AD
=>(EF+FN)/(2DM)=AH/AD=HE/DM=FN/MD
=>(EF+FN)/2=HE=FN
=>EF+FN=2FN
=>FN=EF=HE
a: Xét ΔEAB và ΔECM có
\(\widehat{EAB}=\widehat{ECM}\)(hai góc so le trong, AB//CM)
\(\widehat{AEB}=\widehat{CEM}\)(hai góc đối đỉnh)
Do đó: ΔEAB đồng dạng với ΔECM
=>\(\dfrac{EA}{EC}=\dfrac{EB}{EM}=\dfrac{AB}{CM}\)
=>\(\dfrac{EA}{EC}=\dfrac{AB}{CM}=AB:\dfrac{CD}{2}=2\cdot\dfrac{BA}{CD}\)
b: Xét ΔFAB và ΔFMD có
\(\widehat{FAB}=\widehat{FMD}\)(hai góc so le trong, AB//DM)
\(\widehat{AFB}=\widehat{MFD}\)(hai góc đối đỉnh)
Do đó: ΔFAB đồng dạng với ΔFMD
=>\(\dfrac{FA}{FM}=\dfrac{FB}{FD}=\dfrac{AB}{MD}\)
Ta có: \(\dfrac{FA}{FM}=\dfrac{AB}{MD}\)
\(\dfrac{EB}{EM}=\dfrac{AB}{CM}\)
mà MD=MC
nên \(\dfrac{FA}{FM}=\dfrac{EB}{EM}\)
=>\(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)
Xét ΔMAB có \(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)
nên FE//AB
Ta có: FE//AB
AB//CD
Do đó: FE//CD
c: Xét ΔADM có HF//DM
nên \(\dfrac{HF}{DM}=\dfrac{AF}{AM}\)
Xét ΔBDM có FE//DM
nên \(\dfrac{FE}{DM}=\dfrac{BE}{BM}\)
Xét ΔBMC có EG//MC
nên \(\dfrac{EG}{MC}=\dfrac{BE}{BM}\)
mà \(\dfrac{FE}{DM}=\dfrac{BE}{BM}\)
và MC=MD
nên FE=EG
Ta có: \(\dfrac{AF}{FM}=\dfrac{BE}{EM}\)
=>\(\dfrac{FM}{FA}=\dfrac{EM}{BE}\)
=>\(\dfrac{FM}{FA}+1=\dfrac{EM}{BE}+1\)
=>\(\dfrac{FM+FA}{FA}=\dfrac{EM+BE}{BE}\)
=>\(\dfrac{AM}{FA}=\dfrac{BM}{BE}\)
=>\(\dfrac{AF}{AM}=\dfrac{BE}{BM}\)
mà \(\dfrac{HF}{DM}=\dfrac{AF}{AM}\) và \(\dfrac{BE}{BM}=\dfrac{FE}{DM}\)
nên HF=FE
mà FE=EG
nên HF=FE=EG
a: Xét ΔIAB và ΔIMD có
góc IAB=góc IMD
góc AIB=góc MID
=>ΔIAB đồng dạng với ΔIMD
=>AB/MD=IA/IM=AB/MC
Xet ΔKAB và ΔKCM có
góc KAB=góc KCM
góc AKB=góc CKM
=.ΔKAB đồng dạng với ΔKCM
=>AB/KC=KB/KC
=>KB/KC=IA/IM
=>IK//AB
b: Xét ΔAMD có IE//MD
nên IE/MD=AE/AD=AI/AM
Xét ΔBMC có KF//MC
nên KF/MC=BF/BC
=>IE/MD=KF/MC
=>IE=KF
IK//AB
=>IK/AB=MI/MA
=>\(IK=AB\cdot\dfrac{MI}{MA}=MD\cdot\dfrac{IA}{IM}\cdot\dfrac{MI}{MA}=MD\cdot\dfrac{IA}{MA}\)
\(=\dfrac{1}{2}\cdot CD\cdot\dfrac{IA}{MA}\)
IE/DM=AI/AM
=>\(IE=\dfrac{1}{2}\cdot CD\cdot\dfrac{AI}{AM}\)
=>IE=IK=KF
c: \(CD+AB=45\cdot2:6=90:6=15\left(cm\right)\)
CD=2/3*15=10cm
AB=15-10=5cm
a) Do \(AB//DC\Rightarrow AB//DM\) \(\Rightarrow\frac{AB}{DM}=\frac{AI}{IM}\)( Talet ) (1)
Tương tự ta có : \(\frac{AB}{CM}=\frac{BK}{KM}\) ( Talet ) (2)
Lại có : \(DM=CM\left(gt\right)\) nên từ (1) và (2)
\(\Rightarrow\frac{AI}{IM}=\frac{BK}{KM}\)
Xét \(\Delta ABM\) có \(\frac{AI}{IM}=\frac{BK}{KM}\) (cmt) , \(I\in AM,K\in BM\)
\(\Rightarrow IK//AB\) ( định lý Talet đảo )
b) Áp dụng định lý Talet lần lượt ta được :
+) \(EI//DM\Rightarrow\frac{EI}{DM}=\frac{AI}{AM}\) (3)
+) \(IK//MC\Rightarrow\frac{AI}{AM}=\frac{AK}{AC}=\frac{IK}{MC}\)(4)
+) \(KF//MC\Rightarrow\frac{BK}{BM}=\frac{KF}{MC}\) (5)
Mà : \(DM=CM\left(gt\right)\)
Nên tuqd (3) (4) và (5) \(\Rightarrow EI=IK=KF\) (đpcm)
a ) Hướng giải :
- Cần chứng minh tứ giác ABDM và tứ giác ABMC là hình bình hành.
- Suy ra KM // AD và IM // BC
- Áp dụng tính chất đường trung bình vào 2 tam giác ADC và DBC
- IK là đường trung bình của tam giác ABM
- IK // AB // DC
b ) Hướng giải ;
- Đầu tiên, cần chứng minh 4 điểm E, I, K, F thẳng hàng theo Tiên đề Ơ - clit
- Tiếp tục dùng tính chất đường trung bình vào các tam giác ADM, BMC
- Cuối cùng, EI = IK = KF \(\left(=\frac{DM}{2}=\frac{MC}{2}\right)\)