K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2017

\(a,S=1+3+3^2+....+3^{100}.\)

\(\Rightarrow3S=3+3^2+...+3^{101}\)

\(\Rightarrow3S-S=\left(3+3^2+...+3^{101}\right)-\left(1+3+....+3^{100}\right)\)

\(\Rightarrow2S=3^{101}-1\)

\(\Rightarrow S=\frac{3^{101}-1}{2}\)

\(b,A=1+3^2+3^4+...+3^{100}\)

\(\Rightarrow3^2A=3^2+3^4+...+3^{102}\)

\(\Rightarrow9A-A=\left(3^2+3^4+...+3^{102}\right)-\left(1+3^2+....+3^{100}\right)\)

\(\Rightarrow8A=3^{102}-1\)

\(\Rightarrow A=\frac{3^{102}-1}{8}\)

13 tháng 1 2024

cvvv

12 tháng 10 2024

Ngu xi 

 

 

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) Bạn hãy xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

26 tháng 5 2017

a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

26 tháng 5 2017

a) Có A=\(1+3+3^2+3^3+....+3^{100}\)

\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)

Bài b/c/d : bn cứ lm tương tự.

21 tháng 11 2018

bao giờ vào nhà tao tao chỉ cho

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

14 tháng 7 2017
tự hỏi và tự trả lời :)
29 tháng 7 2019

a, S= 1.2 + 2.3 + 3.4 + 4.5 + 99.100

   -S= 1/1 - 1/2 + ......... + 1/4 -1/5 + [-(99.100)]

      = 1/1 - 1/5 + [-(99.100)]

      = 4/5 - 99/100

      =-19/100

S  = 19/100

Vậy S = 19/100

k mk nha

29 tháng 7 2019

a) \(S=1.2+2.3+...+99.100\)

\(\Rightarrow3S=1.2.3+2.3.3+...+99.100.3\)

\(=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\)

\(=1.2.3+2.3.4-1.2.3+...+99.100.101-98.99.100\)

\(=99.100.101\)

\(=999900\)

\(\Rightarrow S=\frac{999900}{3}=333300\)

22 tháng 2 2020

a) S=\(1-3+3^2-3^3+...+3^{98}-3^{99}.\)

=\((1-3+3^2-3^3)+...+3^{96}-3^{97}+3^{98}-3^{99}.\)

=\(\left(1-3+3^2-3^3\right)+..+3^{96}\left(1-3+3^2-3^3\right)\)

=(\(1-3+3^2-3^3\))(1+\(3^4+...+3^{92}+3^{96})\)

=-20(1+\(3^4+...+3^{92}+3^{96})\)là bội của -20

22 tháng 2 2020

b)S = 1 - 3 + 3^2 - 3^3 +...+ 3^98 - 3^99

=> 3S= 3 - 3^2 + 3^3 - 3^4 +...+ 3^99 - 3^100

=> 3S+S = 1 - 3^100

=>4S=1 - 3^100

=> S = \(\frac{1-3^{100}}{^4}\)

Do S chia hết cho -20 nên S chia hết cho 4 do đó 1-3^100 chia hết cho 4 suy ra 3^100 chia 4 dư 1