Cho hình thang cân ABCD (AB//CD)và 1 điểm M tùy ý nằm trong hình thang.CMR: Luôn dựng được 1 tứ giác nội tiếp hình thang cân ABCD mà độ dài các cạnh của tứ giác bằng độ dài các đoạn thẳng MA, MB, MC, MD
MÌNH CẦN GẤP GIÚP MÌNH NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 sai đề rồi bạn. Nếu BEMD là ht cân thật thì \(\widehat{ABC}=\widehat{MDB}\)mà \(\widehat{MDB}=\widehat{ACB}\)(đồng vị) => \(\widehat{ABC}=\widehat{ACB}\)=> tam giác ABC cân( trái với đề bài)
Tự vẽ hình
Qua M dựng đường thẳng đường thẳng song song với AD cắt AB tại I , cắt CD tại H
Dựng MK song song với AB cắt BC tại K . HJ song song với MA cắt AD tại J
Tứ giác IJHK là cần tìm
Theo cách dựng ta thấy :
\(\widehat{IMK}=\widehat{IHC}\) ( 2 góc đồng vị ; MK // CD )
\(\widehat{IHC}=\widehat{ADC}\) ( 2 góc đồng vị )
\(\widehat{ADC}=\widehat{BCD}\) ( ABCD - hình thang cân )
\(\widehat{BKM}=\widehat{BCD}\) ( 2 góc đồng vị )
\(\Rightarrow\)\(\widehat{IHC}=\widehat{BCD}\left(=\widehat{ADC}\right)\)
\(\Rightarrow\)\(\widehat{IMK}=\widehat{BKM}\)
Do đó : MIBK và MHCK là 2 hình thang cân
\(\Rightarrow\)\(BM=IK\)
\(CM=HK\)
* Hình thang MAJH có MH // AJ và MA // HJ Nên JH = MA
* Hình thang MDJI có IJ // MD và MI // ID
Vậy tứ giác IJHK nội tiếp hình thang cân có các cạnh JH = MA ; IK = MB ; HK = MC ; IJ= MD ( đpcm )