Rút gọn biết thức :
A= 30+31+32+33+....+32018
B= 610+611+612+....+62012
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{31x32-62}{30x31}=\frac{932}{930}=\frac{466}{465}\)
A = 1 + 3 + 32 + 33 +.... +3100
3A = 3(1 + 3 + 32 + 33 +....+3100)
3A = 3 + 32 + 33 + 34 +....+3101
3A - A = 2A = (3 + 32 + 33 + 34 +.... + 3101) - (1 + 3 + 32 + .... + 3100)
2A = ( 3 - 3 ) + ( 32 - 32) +.....+ (3100 - 3100) + (3101 - 1)
2A = 0 + 0 +....+ 0 + 3101 - 1
2A = 3101 - 1
A = (3101 - 1) : 2
30.31.32.33.A=864y3040
=>(3.3)(10.31.32.11).A=864y3040
=>9.(10.31.32.11).A=864y3040
=>864y3040 chia hết cho 9
=>8+6+4+y+3+0+4+0=25+y chia hết cho 9
=>y=2
ta có:86423040=30.31.32.33.88
vậy y=2
30 = 3 x 10
33 = 3 x 11
Tích trên có thể phân tích có 2 thừa số 3 => chia hết cho 9
Vậy y cần tìm là chữ số 2
A = 1 + 3 + 32 + 33 + ... + 3100
3A = 3 + 32 + 33 +34+ .... + 3101
3A - A = (3 + 32 + 34 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)
2A = 3 + 32 + 34 + ... + 3101 - 1 - 3 - 32 - 33 - ... - 3100
2A = (3 - 3) + (32 - 32) + ... + (3100 - 3100) + (3101 - 1)
2A = 3101 - 1
A = \(\dfrac{3^{101}-1}{2}\)
a) Ta có: \(\dfrac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+...+25^2+1}\)
\(=\dfrac{25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+...+\left(25^4+1\right)}{25^{28}\left(25^2+1\right)+25^{24}\left(25^2+1\right)+...+\left(25^2+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}{\left(25^2+1\right)\left(25^{28}+25^{24}+...+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\cdot\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}{\left(25^2+1\right)\left[25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+25^8\left(25^4+1\right)+\left(25^4+1\right)\right]}\)
\(=\dfrac{\left(25^4+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}\)
\(=\dfrac{1}{25^2+1}=\dfrac{1}{626}\)
\(A=3^0+3^1+3^2+......+3^{2018}\)
\(3A=3.\left(3^0+3^1+3^2+.....+3^{2018}\right)\)
\(3A=3^1+3^2+3^3+........+3^{2019}\)
\(3A-A=\left(3^1+3^2+3^3+......+3^{2019}\right)-\left(3^0+3^1+3^2+.....+3^{2018}\right)\)
\(2A=3^{2019}-3^0\)
\(A=\left(3^{2019}-3^0\right):2\)
\(B=6^{10}+6^{11}+6^{12}+....+6^{2012}\)
\(6B=6.\left(6^{10}+6^{11}+6^{12}+.....+6^{2012}\right)\)
\(6B=6^{11}+6^{12}+6^{13}+.......+6^{2013}\)
\(6B-B=\left(6^{11}+6^{12}+6^{13}+......+6^{2013}\right)-\left(6^{10}+6^{11}+6^{12}+.......+6^{2012}\right)\)
\(5B=6^{2013}-6^{10}\)
\(B=\left(6^{2013}-6^{10}\right):5\)