Các bạn giúp mình phép tính tìm x này nha:
1 + 3 + 5 + 7 + ...........+ x = 2500
Mình đang cần gấp giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì |2x-3| - |3x+2| = 0
Suy ra |2x-3|=|3x+2|
Ta có 2 trường hợp:
+)Trường hợp 1: Nếu 2x-3=3x+2
2x-3=3x+2
-3-2=3x-2x
-2=x
+)Trường hợp 2: Nếu 2x-3=-(3x+2)
2x-3=-(3x+2)
2x-3=-3x-2
2x+3x=3-2
5x=1
x=1/5
Vậy x thuộc {-1,1/5}
(2x - 3) - ( 3x + 2) = 0
tính trong ngoặc trước ngoài ngoặc sau
2x - 3 ko phải là 2 nhân âm 3.
2x = 2 nhân x
( 2x - 3) - ( 3x + 2) = 0 có nghĩa là 2x -3 = 3x + 2
còn đâu tự giải nhé
3 + 4 + 5 + ... + x = 525
=> 1 + 2 + 3 + 4 + 5 + ... + x = 1 + 2 + 525
=> (1 + x) × x : 2 = 528
=> (1 + x) × x = 528 × 2
=> (1 + x) × x = 1056 = 33 × 32
=> x = 32
ta có : số số hạng là :
\(\left(x-3\right):1+1=x-2\) ( số số hạng )
tổng là : \(\left(x+3\right).\left(x-2\right):2=525\)
\(\left(x+3\right).\left(x-2\right)=1050\)
Mà 30 x 35 = 1050
\(\Rightarrow x=32\)
1, Ta có :
\(x+\frac{3}{5}=\frac{4}{7}\div\frac{8}{21}\)
\(x+\frac{3}{5}=\frac{4}{7}\times\frac{21}{8}\)
\(x+\frac{3}{5}=\frac{3}{2}\)
\(x=\frac{3}{2}-\frac{3}{5}\)
\(x=\frac{15}{10}-\frac{6}{10}\)
\(x=\frac{9}{10}\)
Vậy x = \(\frac{9}{10}\)
2, Ta có :
\(\frac{2}{3}+\frac{3}{4}\div x=-\frac{1}{6}\)
\(\frac{3}{4}\div x=-\frac{1}{6}-\frac{2}{3}\)
\(\frac{3}{4}\div x=-\frac{1}{6}-\frac{4}{6}\)
\(\frac{3}{4}\div x=-\frac{5}{6}\)
\(x=\frac{3}{4}\div\left(-\frac{5}{6}\right)\)
\(x=\frac{3}{4}\times\left(-\frac{6}{5}\right)\)
\(x=-\frac{9}{10}\)
Vậy x = \(-\frac{9}{10}\)
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
1/ \(x^3+2=3\sqrt[3]{3x-2}\)
Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ
\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)
Lấy trên - dưới ta được
\(x^3-a^3+3x-3a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)
\(\Leftrightarrow x=a\)
\(\Leftrightarrow x=\sqrt[3]{3x-2}\)
\(\Leftrightarrow x^3-3x+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
a) |2x-3|+x=21
|2x-3|=21-x
\(\Rightarrow\)\(\orbr{\begin{cases}2x-3=21-x\\2x-3=-\left(21-x\right)\end{cases}}\)
TH1: 2x-3=21-x
2x-x=21+3
x=24
TH2: 2x-3=-(21-x)
2x-3 = -21+x
2x-x=-21+3
x=-18
Vậy x \(\varepsilon\){-18;24}
( x - 6 )( x + 1 ) = 0
<=> x - 6 = 0 hoặc x + 1 = 0
<=> x = 6 hoặc x = -1
C =1+2-3-4+5+6-7-8+.....+97+98-99-100
= ( 1 + 2 -3 -4 ) + ( 5+6-7-8 ) + ... + ( 97 + 98 -99-100)
= 4 + ( -4 ) + ... + ( -4) ( do có 25 số)
= 4 x25 = 100
A= 1 + 2 - 3 -4 + 5 + 6 -7 -8 + ... +97 +98 -99 -100 ( có: ( 100 - 1 ) : 1 + 1 = 100 )
A= ( 1 +2 - 3 - 4 ) + ( 5 + 6 - 7 -8 ) + ... ( 97 + 98 - 99 +100 ) ( có 100 : 4 = 25 cặp )
A= - 4 + -4 + -4 + ... + -4 ( có 25 số hạng )
A= ( -4 ) . 25
A= -100
tham khảo
leminhduc làm gì mk chả hiểu lớp 6 làm gì có căn rồi
\(1+3+5+......+x=2500\)
\(\Rightarrow\left[\left(x-1\right):2+1\right].\left(x+1\right):2=2500\)
\(\Rightarrow\left(\frac{x}{2}-\frac{1}{2}+1\right).\left(x+1\right)=2500.2\)
\(\Rightarrow\left(\frac{x}{2}+\frac{1}{2}\right).\left(x+1\right)=5000\)
\(\Rightarrow\frac{x^2}{2}+\frac{1}{2}x+\frac{x}{2}+\frac{3}{2}=5000\)
\(\Rightarrow\frac{x^2+x+x+3}{2}=5000\)
\(\Rightarrow x^2+2x+3=5000.2\)
\(\Rightarrow x^2+2x.1+1^2+3-1^2=10000\)
\(\Rightarrow\left(x+1\right)^2+2=10000\)
\(\Rightarrow\left(x+1\right)^2=10000-2\)
\(\Rightarrow\left(x+1\right)^2=9998\)
\(\Rightarrow x+1=\sqrt{9998}\)
\(\Rightarrow x=\sqrt{9998}-1\)