Tìm x:
4x + 4x + 2 = 272
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.(x-3)+3x+0.5=\(\dfrac{3}{4}\)
4x+2+4x=272
(1,2-5x).(2\(\dfrac{1}{8}\) +1/2 x)=0
GIÚP MÌNH VỚI !!!!
\(2\left(x-3\right)+3x+0,5=\dfrac{3}{4}\\ \Leftrightarrow2x-6+3x+\dfrac{1}{2}=\dfrac{3}{4}\\ \Leftrightarrow x\left(2+3\right)=\dfrac{3}{4}-\dfrac{1}{2}+6\\ \Leftrightarrow5x=\dfrac{25}{4}\\ \Leftrightarrow x=\dfrac{25}{4}:5=\dfrac{5}{4}\\ ---\\ 4^{x+2}+4^x=272\\ \Leftrightarrow4^x\left(4^2+1\right)=272\\ \Leftrightarrow4^x.17=272\\ \Leftrightarrow4^x=\dfrac{272}{17}=16=4^2\\ Vậy:x=2\\ ----\\ \left(1,2-5x\right)\left(2\dfrac{1}{8}+\dfrac{1}{2}x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}1,2-5x=0\\2,125+0,5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=1,2\\0,5x=-2,125\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1,2}{5}=0,24\\x=\dfrac{-2,125}{0,5}=-4,25\end{matrix}\right.\)
a) \(2\left(x-3\right)+3x+0,5=\dfrac{3}{4}\)
\(\Rightarrow2x-6+3x+\dfrac{1}{2}=\dfrac{3}{4}\)
\(\Rightarrow5x-6=\dfrac{3}{4}-\dfrac{1}{2}\)
\(\Rightarrow5x-6=\dfrac{1}{4}\)
\(\Rightarrow5x=\dfrac{1}{4}+6\)
\(\Rightarrow5x=\dfrac{25}{4}\)
\(\Rightarrow x=\dfrac{25}{4}:5\)
\(\Rightarrow x=\dfrac{5}{4}\)
b) \(4^{x+2}+4^x=272\)
\(\Rightarrow4^x\cdot4^2+4^x\cdot1=272\)
\(\Rightarrow4^x\cdot\left(16+1\right)=272\)
\(\Rightarrow4^x\cdot17=272\)
\(\Rightarrow4^x=16\)
\(\Rightarrow4^x=4^2\)
\(\Rightarrow x=2\)
c) \(\left(1,2-5x\right)\left(2\dfrac{1}{8}+\dfrac{1}{2}x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}1,2-5x=0\\\dfrac{15}{8}+\dfrac{1}{2}x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}5x=1,2\\\dfrac{1}{2}x=-\dfrac{15}{8}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1,2}{5}\\x=-\dfrac{15}{8}:\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6}{25}\\x=-\dfrac{15}{4}\end{matrix}\right.\)
Mọi người ơi giúp mik nhanh lên, mai mik KT rồi, mik lo quá ak, nghe nói là đê khó lắm!!!
a:
Sửa đề: \(P=\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{4x^2}{x^2-9}\right):\left(\dfrac{5}{3-x}-\dfrac{4x+2}{3x-x^2}\right)\)\(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}-\dfrac{4x^2}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{5x-4x-2}{x\left(3-x\right)}\)
\(=\dfrac{-x^2-6x-9+x^2-6x+9-4x^2}{\left(x-3\right)\left(x+3\right)}:\dfrac{x-2}{x\left(3-x\right)}\)
\(=\dfrac{-4x^2-12x}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x\left(3-x\right)}{x-2}\)
\(=\dfrac{-4x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-x\left(x-3\right)}{x-2}=\dfrac{4x^2}{x-2}\)
b: x^2-4x+3=0
=>x=1(nhận) hoặc x=3(loại)
Khi x=1 thì \(P=\dfrac{4\cdot1^2}{1-2}=-4\)
c: P>0
=>x-2>0
=>x>2
d: P nguyên
=>4x^2 chia hết cho x-2
=>4x^2-16+16 chia hết cho x-2
=>x-2 thuộc {1;-1;2;-2;4;-4;8;-8;16;-16}
=>x thuộc {1;4;6;-2;10;-6;18;-14}
Bài 2:
a: Ta có: \(x^2+4x+7\)
\(=x^2+4x+4+3\)
\(=\left(x+2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-2
4x + 4x + 2 = 272
\(\Rightarrow\)4x + 4x . 42 = 272
\(\Rightarrow\)4x . ( 16 + 1 ) = 272
\(\Rightarrow\)4x . 17 = 272
\(\Rightarrow\)4x = 272 : 17
\(\Rightarrow\)4x = 16
\(\Rightarrow\)4x = 42
\(\Rightarrow\)x = 2