Thực hiện phép chia:
\(\left(x^3y+xy^3+xy\right):y\left(x^2+y^2+1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)`
`3x(2xy - 5x^2y)`
`= 3x*2xy + 3x* (-5x^2y)`
`= 6x^2y - 15x^3y`
`b)`
`2x^2y (xy - 4xy^2 + 7y)`
`= 2x^2y * xy + 2x^2y * (-4xy^2) + 2x^2y * 7y`
`= 2x^3y^2 - 8x^3y^3 + 14x^2y^2`
`c)`
`(-2/3xy^2 + 6yz^2)*(-1/2xy)`
`= (-2/3xy^2)*(-1/2xy) + 6yz^2 * (-1/2xy)`
`= 1/3x^2y^3 - 3xy^2z^2`
`a, 3x(2xy-5x^2y)`
`= 6x^2y - 15x^3y`
`b, 2x^2y(xy-4xy^2+7y)`
`= 2x^3y^2 - 8x^3y^3 + 14x^2y^2`
`c, (-2/3xy^2 + 6yz^2).(-1/2xy)`
`= 1/3x^2y^3 - 3xy^2z^2`
a/ (\(x^3y^2\)-\(\frac{1}{2}x^3y\) + \(2xy\) - \(2x^2y^3\) + \(xy^2\) - \(4y^2\) =
a: =-4xyz^2
b: =-9x^2y
c: =16x^2y^2
d: =1/6x^2y^3
e: =13/6x^3y^2
f: =7/12x^4y
a) -xyz² - 3xz.yz
= -xyz² - 3xyz²
= -4xyz²
b) -8x²y - x.(xy)
= -8x²y - x²y
= -9x²y
c) 4xy².x - (-12x²y²)
= 4x²y² + 12x²y²
= 16x²y²
d) 1/2 x²y³ - 1/3 x²y.y²
= 1/2 x²y³ - 1/3 x²y³
= 1/6 x²y³
e) 3xy(x²y) - 5/6 x³y²
= 3x³y² - 5/6 x³y²
= 13/6 x³y²
f) 3/4 x⁴y - 1/6 xy.x³
= 3/4 x⁴y - 1/6 x⁴y
= 7/12 x⁴y
a) \(\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x+1\right)\left(x-1\right)}=\dfrac{-4\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{-4}{x+1}\)
\(\dfrac{xy\left(x^2+y^2\right)}{xy\left(x^3\right)}.\dfrac{1}{x^2+y^2}=\dfrac{1}{x^3}\)
a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)
b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)
c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)
\(a.\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
\(b.\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
\(=6x-y+2x^2+3y-2+x\)
\(=2x^2+7x+2y-2\)
\(c.\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^3\right):\dfrac{3}{2}x^2y^3\)
\(=x-y+4y^2-6xy+10x^2\)
a) biết chết liền
b) \(\left(x^2-xy+y^2\right)\left(x+y\right)=x^3+y^3\)
\(\left(x^3y+xy^3+xy\right):y\left(x^2+y^2+1\right).\)
\(=xy.\left(x^2+y^2+1\right):y.\left(x^2+y^{2+}1\right)\)
\(=\left(xy:y\right).\left(x^2+y^2+1\right)^2\)
\(=x.\left(x^2+y^2+1\right)^2\)
\(=\frac{\left[xy\left(x^2+y^2+1\right)\right]}{y.\left(x^2+y^2+1\right)}\)
\(=x\)