chứng minh rằng: -4x2 - 4x - 2 < 0 với mọi giá trị của x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{-1}{4x+2}< 0\)
\(\Leftrightarrow4x+2>0\)
\(\Leftrightarrow4x>-2\)
\(\Leftrightarrow x>\frac{-1}{2}\)
Vậy ...
b)\(\frac{-x^2-2x-3}{x^2+1}\)
Ta có: \(-x^2-2x-3=-\left(x+1\right)^2-2\)
Vì \(-\left(x+1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+1\right)^2-2\le-2< 0;\forall x\)
Lại có \(x^2\ge0;\forall x\)
\(\Rightarrow x^2+1\ge1>0;\forall x\)
\(\Rightarrow\frac{-x^2-2x-3}{x^2+1}< 0;\forall x\)
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
a) Ta có \(2x^2-8x+13=2x^2-8x+8+5\)
\(=2\left(x^2-4x+4\right)+5\)
\(=2\left(x-2\right)^2+5\ge5\forall x\)
Giả sử trước khi làm nhé
\(a)\)\(2x^2-8x+13>0\)
\(\Leftrightarrow\)\(4x^2-16x+26>0\)
\(\Leftrightarrow\)\(\left(4x^2-16+16\right)+10>0\)
\(\Leftrightarrow\)\(\left(2x-4\right)^2+10\ge10>0\) ( luôn đúng )
Vậy ...
\(b)\)\(-2+2x-x^2< 0\)
\(\Leftrightarrow\)\(x^2-2x+2>0\)
\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+1>0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2+1\ge1>0\) ( luôn đúng )
Vậy ...
Chúc bạn học tốt ~
Câu a :
\(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2\ge\dfrac{3}{4}\)
Vậy biểu thức trên luôn lớn hơn 0 với mọi x
Làm Full cho you nhé,bạn kia sai r:
\(linh_1=x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\left(đpcm\right)\)
\(linh_2=-4x^2-4x-2=-1\left(4x^2+4x+2\right)=-1\left(4x^2+4x+1+1\right)=-1\left(4x^2+4x+1\right)-1=-1\left(2x+1\right)^2-1< 0\left(đpcm\right)\)
Ta có:
\(F\left(x\right)=\frac{5}{4}x^2+2x+2\)
\(F\left(x\right)=\frac{1}{4}+x^2+x+x+2\)
\(F\left(x\right)=\left(x^2+x\right)+\left(x+1\right)+2+\frac{1}{4}\)
\(F\left(x\right)=x\left(x+1\right)+\left(x+1\right)+\frac{8}{4}+\frac{1}{4}\)
\(F\left(x\right)=\left(x+1\right)\left(x+1\right)+\frac{9}{4}\)
\(F\left(x\right)=\left(x+1\right)^2+\frac{9}{4}\)
Ta có:
\(\left(x+1\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)+\frac{9}{4}\ge\frac{9}{4}\)
=> Đa thức \(F\left(x\right)\)không thể nhận giá trị \(0\)
\(-4x^2-4x-2=-\left(4x^2+4x+2\right)=-\left[\left(2x\right)^2+2.2x.1+1+1\right]\)
\(=-\left[\left(2x+1\right)^2+1\right]=-\left(2x+1\right)^2-1\)
Vì \(\left(2x+1\right)^2\ge0\Rightarrow-\left(2x+1\right)^2\le0\Rightarrow-\left(2x+1\right)^2-1\le-1< 0\)
Vậy ta có đpcm.