K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

a) xét tam giác MNI và tam giác MPI có:

MI chung

NI=DI( I là trung điểm của NP)

MN=NP(giả thiết)

=>Tam giác MNI=tam giác MPI

=>Góc NIM=gócPMI

=> MI là tia phân giác của  góc PMN

a) Ta có: \(\widehat{MNP}+\widehat{MNA}=180^0\)(hai góc kề bù)

\(\widehat{MPN}+\widehat{MPB}=180^0\)(hai góc kề bù)

mà \(\widehat{MNP}=\widehat{MPN}\)(hai góc ở đáy của ΔMNP cân tại M)

nên \(\widehat{MNA}=\widehat{MPB}\)

Xét ΔMNA và ΔMPB có 

MN=MP(ΔMNP cân tại M)

\(\widehat{MNA}=\widehat{MPB}\)(cmt)

AN=PB(gt)

Do đó: ΔMNA=ΔMPB(c-g-c)

Suy ra: MA=MB(hai cạnh tương ứng)

Xét ΔMAB có MA=MB(cmt)

nên ΔMAB cân tại M(Định nghĩa tam giác cân)

b) Sửa đề: PE vuông góc với MB

Ta có: ΔMAN=ΔMBP(cmt)

nên \(\widehat{AMN}=\widehat{BMP}\)(hai góc tương ứng)

hay \(\widehat{DMN}=\widehat{EMP}\)

Xét ΔMDN vuông tại D và ΔMEP vuông tại E có 

MN=MP(ΔMNP cân tại M)

\(\widehat{DMN}=\widehat{EMP}\)(cmt)Do đó: ΔMDN=ΔMEP(cạnh huyền-góc nhọn)

Suy ra: MD=ME(hai cạnh tương ứng)

c) Xét ΔMDE có MD=ME(cmt)

nên ΔMDE cân tại M(Định nghĩa tam giác cân)

\(\Leftrightarrow\widehat{MDE}=\dfrac{180^0-\widehat{DME}}{2}\)(Số đo của một góc ở đáy trong ΔMDE cân tại M)

hay \(\widehat{MDE}=\dfrac{180^0-\widehat{AMB}}{2}\)(1)

Ta có: ΔMAB cân tại M(cmt)

nên \(\widehat{MAB}=\dfrac{180^0-\widehat{AMB}}{2}\)(Số đo của một góc ở đáy trong ΔMAB cân tại M)(2)

Từ (1) và (2) suy ra \(\widehat{MDE}=\widehat{MAB}\)

mà \(\widehat{MDE}\) và \(\widehat{MAB}\) là hai góc ở vị trí đồng vị

nên DE//AB(Dấu hiệu nhận biết hai đường thẳng song song)

a: Xét ΔMNI và ΔMPI có 

MN=MP

NI=PI

MI chung

Do đó: ΔMNI=ΔMPI

Ta có: ΔMNP cân tại M

mà MI là đường trung tuyến

nên MI là đường cao

b: Xét tứ giác MNQP có

I là trung điểm của MQ

I là trung điểm của NP

Do đó: MNQP là hình bình hành

Suy ra: MN//PQ

c: Xét tứ giác MEQF có 

ME//QF

ME=QF

Do đó: MEQF là hình bình hành

Suy ra: MQ và EF cắt nhau tại trung điểm của mỗi đường

mà I là trung điểm của MQ

nên I là trung điểm của FE

hay E,I,F thẳng hàng

13 tháng 1 2023

Sử dụng tính chất hình bình hành nha bạn

a: Xét ΔMNA và ΔMBA có

MN=MB

góc NMA=gócBMA
MA chung

Do đó: ΔMNA=ΔMBA
=>AN=AB

b: MN=MB

AN=AB

=>MA là trung trực của NB

=>MA vuông góc với NB

c: Xét ΔMCP có MN/MC=MB/MP

nên NB//CP

d: Xét ΔANC và ΔABP có

AN=AB

góc ANC=góc ABP

NC=BP

Do đó: ΔANC=ΔABP

=>góc NAC=góc BAP

=>góc NAC+góc NAB=180 độ

=>B,A,C thẳng hàng

a: Xét ΔAMN và ΔAEP có

AM=AE
góc MAN=góc EAP

AN=AP

=>ΔAMN=ΔAEP

b: Xét tứ giácc MNEP có

A là trung điểm chung của ME và NP

góc NMP=90 độ

=>MNEP là hình chữ nhật

=>EP vuông góc MP

c: ΔMNP vuông tại M

mà MA là trung tuyến

nên MA=1/2NP

17 tháng 4 2023

câu c MA là đường trung tuyến không suy ra được MA = 1/2NP ạ ;-;

23 tháng 5 2021

 

a) xét ΔMPI và ΔMNI có:

\(\widehat{MIN}=\widehat{MIP}=90^o\)

MN=MP(ΔMNP cân tại M)

\(\widehat{MNI}=\widehat{MPI}\)(ΔMNP cân tại M)

⇒ΔMPI=ΔMNI(c.huyền.g.nhọn)

⇒IN=IP(2 cạnh tương ứng)

hay I là trung điểm của NP(đ.p.ch/m)

vì ΔMPI=ΔMNI nên \(\widehat{PMI}=\widehat{NMI}\)(2 góc tương ứng)

hay MI là phân giác của \(\widehat{PMN}\)

⇒điểm I cách đều 2 cạnh MN và MP(đ.p.ch/m)

b)Ta có: \(\widehat{MNI}+\widehat{MNA}=180^o\) (2 góc kề bù)

Mặc khác \(\widehat{MPI}+\widehat{BPI}=180^o\)(2 góc kề bù)

Mà \(\widehat{MNI}=\widehat{MPI}\)

Do đó: \(\widehat{MNA}=\widehat{BPI}=180^o-\widehat{MNI}\)

Vì I là trung điểm của NP⇒NI=PI

Mà NI=NA

⇒NA=PI

vì ΔMNP cân tại M ⇒MN=MP

Mà BP=MP ⇒BP=MN

xét ΔMNA và ΔBPI có:

\(\widehat{MNA}=\widehat{BPI}\)(ch/m trên)

NA=PI(ch/m trên)

BP=MN(ch/m trên)

⇒ΔMNA=ΔBPI(c-g-c)

⇒BI=MA(2 cạnh tương ứng)

c)Vì P là trung điểm của MB ⇒AP là đường trung tuyến của ΔMNP

vì C là trung điểm của AB ⇒MC là đường trung tuyến của ΔMNP

⇒I là trọng tâm của ΔMAB

⇒I,M,C thẳng hàng(đ.p.ch/m)

 

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường phân giác và cũng là đường cao

b: Ta có: AB=CD

mà AB=AC

nên CD=AC

=>ΔACD cân tại C

mà CM là đường cao

nên M là trung điểm của AD

Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//CD