Tìm số dư trong phép chia 3100 cho 7 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=3+3²+3³+..... +3¹00
B=3²+3³+3⁴+... 3¹00+3
B=3²(1+3+3²) +... +3 98(1+3+3²) +3
B=3²•13+... +3 98•13+3
=) 3²•13+3 98•13 chia hết cho 13
=) Số dư là 3
B = 3 + 32 + 33 + 34 + ... + 3100
B = 31 + 32 + 33 + 34+... + 3100
Xét dãy số: 1; 2; 3; 4; ...; 100 dãy số này là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là: (100 - 1) : 1 + 1 = 100.
Vậy B có 100 hạng tử, vì 100 : 3 = 33 dư 1
Nên nhóm 3 hạng tử liên tiếp của B lại thành một nhóm ta được
B = (3100 + 399 + 398) + (397 + 396 + 395) + ... + (34 + 33 + 32) + 3
B = 398.(32 + 3 + 1) + 395.(32 + 3 + 1) + ... + 32.( 32 + 3 + 1) + 3
B = 398. 13 + 395.13 + ... + 32.13 + 3
B = 13.(398 + 395 + ... + 32) + 3
Vì: 13. (398 + 395 + ... + 32) ⋮ 13
⇒ B : 13 dư 3
Bài 1:
$B=1+3+3^2+3^3+...+3^{100}$
$=1+(3+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})$
$=1+3(1+3)+3^3(1+3)+...+3^{99}(1+3)$
$=1+(1+3)(3+3^3+...+3^{99})=1+4(3+3^3+....+3^{99})$
$\Rightarrow B$ chia 4 dư 1.
Bài 2:
$C=5-5^2+5^3-5^4+...+5^{2023}-5^{2024}$
$5C=5^2-5^3+5^4-5^5+...+5^{2024}-5^{2025}$
$\Rightarrow C+5C=5-5^{2025}$
$6C=5-5^{2025}$
$C=\frac{5-5^{2025}}{6}$
a) Ta có: \(3^{2021}=3^{2019}\cdot3^2=\left(3^3\right)^{673}\cdot3^2\equiv1.3^2=9\left(mod13\right)\)
Vậy số dư của \(3^{2021}\) cho 13 là 9.
b) \(2008^{2008}=\left(2008^2\right)^{1004}\equiv1^{1004}=1\) (mod 7)
Vậy số dư của $2008^{2008}$ cho $7$ là $1.$
P/s: Rất lâu rồi mình không giải toán đồng dư nên không chắc bạn nhé.
nhung ma cai do la VD thoi
con tren kia moi la bai mk can moi ng giup mk mun moi ng giai giong nhu z
Số dư lớn nhất bao giờ cũng bé hơn số chia 1 đơn vi . Vậy số dư là 6
Số bị chia là :
7 x 6 + 6 = 48
Đáp số : 48
Gọi số bị chia là a, ta có :a : 7 = 16 (dư 6) hay a - 6 : 7 = 16.
a - 6 = 16 . 7.
a - 6 = 112.
a = 112 + 6
a = 118.
Gọi số bị chia là a, ta có :a : 7 = 16 (dư 6) hay a - 6 : 7 = 16.
a - 6 = 16 . 7.
a - 6 = 112.
a = 112 + 6
a = 118
chúc bn hok tốt @_@
ta có: \(3^{100}:7=\left(3^2\right)^{50}:7=\left(7+2\right)^{50}:7=7k+7m..+2^{50}:7\Rightarrow\)
vậy ta cần tìm số sư của 2^50:7
\(2^{50}=\left(7.4+4\right)^{10}:7=7n......4^{10}:7=\left(14+2\right)^5:7=7m...+2^5:7\)dư là 32:7
vậy số dư 3^100 : 7 là số dư của 32:7 là 4 (cách này hơi khó hiểu nên ta có c2 dễ hiểu hơn là)
c2: \(3^{100}=\left(81\right)^{25}=...1\)
vậy nó tận cùng là 1 nên chia 7 dư 4