Cho số a,b e Z;b > 0
So sánh a/b và a+2017/b+2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điều kiện \(n+2\ne0\Leftrightarrow n\ne-2\)
b) \(E=\frac{3n+7}{n+2}=\frac{3n+6+1}{n=2}=\frac{3\left(n+2\right)}{n+2}+\frac{1}{n+2}=3+\frac{1}{n+2}\)
Để E thuộc Z thì 1 phải chia hết cho n+2 hay n+2 là ước của 1
Ư(1) = {-1; 1}
+) n+2 = -1 => n = -3
+) n+2 = 1 => n = -1
Vậy n E {-3; -1} thì E thuộc Z
tớ biết tớ ....................................................................chết liền!
Đặt: \(PDZ=\left(a-x\right)\left(b-y\right)\left(c-t\right)\left(d-z\right)\left(e-q\right)\)
Giải: Ta có: \(a;b;c;d;e\) và \(x;y;z;t;q\) là hoán vị của chúng.
Nếu \(a;b;c;d;e\) đồng thời là số chẵn hoặc số lẻ thì hiển nhiên \(PDZ⋮2\)
Nếu \(a;b;c;d;e\) tồn tại ở 4 số lẻ 1 số chẵn hoặc 4 số chẵn 1 số lẻ
\(\Rightarrow x;y;z;t;q\) cũng tồn tại tương ứng
Khi đó: \(PDZ=\left(l_1-c_1\right)\left(l_2-c_2\right)\left(l_3-l_4\right)\left(l_5-l_6\right)\left(l_7-l_8\right)=\left(c_1-l_1\right)\left(c_2-l_2\right)\left(c_3-c_4\right)\left(c_5-c_6\right)\left(c_7-c_8\right)\) và hoán vị
Vì \(l-l=c;c-c=c\) nên \(PDZ⋮2\)
chứng minh tương tự với trường hợp 3 lẻ 2 chẵn và 3 chẵn 2 lẻ ta có đpcm
\(z\ne4i\Rightarrow\left\{{}\begin{matrix}a\ne0\\b\ne4\end{matrix}\right.\)
\(\frac{z-4}{z-4i}=\frac{a-4+bi}{a+\left(b-4\right)i}=\frac{\left(a-4+bi\right)\left(a-\left(b-4\right)i\right)}{a^2-\left(b-4\right)^2}=\frac{a\left(a-4\right)+b\left(b-4\right)-\left[\left(a-4\right)\left(b-4\right)-ab\right]i}{a^2-\left(b-4\right)^2}\)
Số phức trên là thuần ảo khi và chỉ khi \(\left\{{}\begin{matrix}a\left(a-4\right)+b\left(b-4\right)=0\\\left(a-4\right)\left(b-4\right)-ab\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-2\right)^2+\left(b-2\right)^2=8\\a+b-4\ne0\end{matrix}\right.\)
\(\Rightarrow\) Tập hợp \(z\) là điểm \(M\left(a;b\right)\) thuộc đường tròn (C) tâm \(I\left(2;2\right)\) bán kính \(R=2\sqrt{2}\) và khác 2 điểm \(A\left(0;4\right)\) và \(B\left(4;0\right)\)
\(P=\left|z\right|^2=a^2+b^2=OM^2\)
\(P_{max}\) khi M trùng giao điểm của đường thẳng OI và đường tròn (giao điểm năm khác phía O so với I)
Phương trình OI: \(1\left(x-2\right)-1\left(y-2\right)=0\Leftrightarrow x-y=0\)
Giao điểm của OI và (C): \(2\left(x-2\right)^2=8\Rightarrow\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
\(\Rightarrow M_1\left(0;0\right)\) (loại); \(M_2\left(4;4\right)\) \(\Rightarrow a=b=4\)
Không có kết quả?!
e) Ta có: x=-2
nên \(\dfrac{10}{a-3}=-2\)
\(\Leftrightarrow a-3=-5\)
hay a=-2
a) Để x nguyên thì \(10⋮a-3\)
\(\Leftrightarrow a-3\inƯ\left(10\right)\)
\(\Leftrightarrow a-3\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(a\in\left\{4;2;5;1;8;-2;13;-7\right\}\)
nguyễn trung ruồi
a+2017/b+2017=a+2017-2017/b+2017-2017=a/b
=> a/b=a+2017/b+2017