a) Chứng minh : 5 n - 1 chia hết cho 4
b) Tìm x , y thuộc Z để 10 x + 48 = y 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,5 đồng dư với 1(mod 4)
=>5n đồng dư với 1n=1(mod 4)
=>5n=4k+1
=>5n-1=4k+1-1=4k chia hết cho 4
=>đpcm
b,xét x=0=>100+48=49=72(chọn)
xét x>0=>10x+48=y2 có tận cùng =8(loại)
vậy (x;y)=(0;7)
\(4x-xy+2y=3\)
\(\Rightarrow x\left(4-y\right)-8+2y=3-8\)
\(\Rightarrow x\left(4-y\right)-2\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(y-4\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Tự xét bảng
\(3y-xy-2x-5=0\)
\(\Rightarrow y\left(3-x\right)-2x=5\)
\(\Rightarrow y\left(3-x\right)+6-2x=5+6\)
\(\Rightarrow y\left(3-x\right)+2\left(3-x\right)=11\)
\(\Rightarrow\left(y+1\right)\left(3-x\right)=11\)
\(\Rightarrow\left(3-x\right);\left(y+1\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự xét
\(2xy-x-y=100\)
\(\Rightarrow x\left(2y-1\right)-y=100\)
\(2x\left(2y-1\right)-\left(2y-1\right)=100+1\)
\(\left(2x-1\right)\left(2y-1\right)=101\)
\(\Rightarrow\left(2x-1\right);\left(2y-1\right)\inƯ\left(101\right)=\left\{\pm1;\pm101\right\}\)
Tự xét bảng
P/s : bài 3 có gì sai ko ?
a) 3xy + x + 2y = 0
=> x.(3y + 1) = -2y
=> \(x=\frac{-2y}{3y+1}\)
Mà x nguyên => -2y chia hết cho 3y + 1
=> 2y chia hết cho 3y + 1
=> 6y chia hết cho 3y + 1
=> 6y + 2 - 2 chia hết cho 3y + 1
=> 2.(3y + 1) - 2 chia hết cho 3y + 1
Do 2.(3y + 1) chia hết cho 3y + 1 => 2 chia hết cho 3y + 1
=> \(3y+1\in\left\{1;-1;2;-2\right\}\)
Mà 3y + 1 chia 3 dư 1 => 3y + 1 \(\in\left\{1;-2\right\}\)
+ Với 3y + 1 = 1 thì 3y = 0 => y = 0
=> \(x=\frac{-2.0}{3.0+1}=\frac{0}{1}=0\)
+ Với 3y + 1 = -2 thì 3y = -3 => y = -1
=> \(x=\frac{-2.\left(-1\right)}{3.\left(-1\right)+1}=\frac{2}{-3+1}=\frac{2}{-2}=-1\)
Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: (0;0) ; (-1;-1)
b) Ta có:
10n + 45n - 1
= 10n - 1 - 9n + 54n
= 999...9 - 9n + 54n
(n c/s 9)
= 9.(111...1 - n) + 54n
(n c/s 1)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 mà tổng các chữ số 111...1 là n
(n c/s 1)
=> 111...1 - n chia hết cho 3
(n c/s 1)
=> 9.(111...1 - n) chia hết cho 27; 54n chia hết cho 27
(n c/s 1)
=> 10n + 45n - 1 chia hết cho 27 (đpcm)
Ta có
\(5^n\) 2 chữ số tận cùng là 25
=> \(5^n-1\) hai chứ số tận cùng là 24
24 chia hết cho 4
=> \(5^n-1\) chia hết cho 4