K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

Giả sử  \(\sqrt{11}\)là số hữu tỉ thì đc viết dưới dạng

              \(\sqrt{11}=\frac{m}{n}\)với \(m,n\in N\), (m,n)\(=1\)

Do 11 không là SCP nên \(\frac{m}{n}\notin N\)\(\Rightarrow n>1\)

Ta có \(m^2=11\cdot n^2\)

Gọi p là ước nguyên tố nào đó của n, suy ra \(m^2⋮p\), hay \(m⋮p\)

Như vậy, p là ước nguyên tố của mvà n trái với giả thiết

Vậy \(\sqrt{11}\)là số vô tỉ

18 tháng 9 2017

 Chứng minh phản chứng : 
Giả sử √2 là số hữu tỉ 
=> √2 = a/b với a, b nguyên và a/b tối giản hay (a ; b) = 1 (1) 
√2 = a/b 
<=> 2 = a²/b² 
<=> b² = a²/2 
=> a² chia hết cho 2 
=> a chia hết cho 2 (vì 2 là số nguyên tố) (2) 
=> a = 2k. Thay vào : 
2 = a²/b² 
<=> 2 = (2k)²/b² 
<=> b² = 2k² 
=> b² chia hết cho 2 
=> b chia hết cho 2 (3) 
Từ (2) và (3) => ƯC (a ; b) = 2 
=> Mâu thuẫn (1) 
=> Điều giả sử là sai 
=> √2 là số vô tỉ (đpcm) 

1 tháng 9 2023

help me!

cứu tui zới!

1 tháng 9 2023

tách ra đk

23 tháng 7 2021

Giả sử \(\sqrt{2}+\sqrt{3}\) là số hữu tỉ ⇒ \(\left(\sqrt{2}+\sqrt{3}\right)^2\) ∈ Q ⇒ 2 + 2.\(\sqrt{2}.\sqrt{3}\) + 3 ∈ Q

Mà 2 và 3 ∈ Q ⇒ 2.\(\sqrt{2}.\sqrt{3}\)  ∈ Q ⇒ \(\sqrt{2}.\sqrt{3}\) ∈ Q ⇒ \(\sqrt{6}\) ∈ Q (Vô lý)

27 tháng 10 2016

Chứng minh cái này thì đơn giản thôi! 
Mình xin trình bày cách chứng minh mà mình tâm đắc nhất: 
Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau) 
=>(m/n)^2=2 
=>m^2=2n^2 
=>m^2 chia hết cho 2 
=>m chia hết cho 2 
Đặt m=2k (k thuộc Z) 
=>(2k)^2=2n^2 
=>2k^2=n^2 
=> n^2 chia hết cho 2 
=> n chia hết cho 2. 
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau 
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.

2 tháng 7 2015

mk nghĩ thế này

a,b) Ta thấy: không có số nào mũ 2 lên được 15 và 2

=>\(\sqrt{15},\sqrt{2}\) là số vô tỉ

c) ta có: \(\sqrt{2}\) là số vô tỉ

mà Số tự nhiên - số vô tỉ luôn luôn là số vô tỉ

=>đpcm

nha bạn

26 tháng 7 2016

căn 2 vô tỉ => 1+ căn 2 vô tỉ => căn của  (1+ căn 2) vô tỉ........cứ như vậy là ra

29 tháng 7 2016

nếu có dấu 3 chấm sau sô 2 cuối cùng thì làm ntn v ak?

23 tháng 7 2021

Giả sử \(\sqrt{6}\) là số hữu tỉ ⇒ \(\sqrt{6}\) = \(\dfrac{m}{n}\) với \(\left\{{}\begin{matrix}m,n\in Z^+\\\left(m,n\right)=1\end{matrix}\right.\) ⇒ 6 = \(\dfrac{m^2}{n^2}\) là số nguyên ⇒ \(m^2\)\(n^2\). Mà \(\left(m,n\right)=1\)\(n^2\) = 1 ⇒ 6 = \(m^2\) (Vô lý)

Vậy \(\sqrt{6}\) là số vô tỉ

23 tháng 7 2021

Giả sử \(\sqrt{6}\) là số hữu tỉ thì \(\sqrt{6}=\dfrac{a}{b}\left(a,b\in Z;b\ne0;\left(a,b\right)=1\right)\)

\(\Rightarrow6b^2=a^2\).

Khi đó \(a^2⋮b^2\Rightarrow a⋮b\). Đặt a = bk với k là số nguyên. Khi đó \(6b^2=\left(bk\right)^2\Rightarrow6=k^2\), vô lí vì 6 không là số chính phương.

Vậy ta có đpcm.

26 tháng 7 2016

Đặt  3√2=x23=x.  xx là số vô tỉ

       c=x+x2c=x+x2 

Giả sử  cc  là số hữu tỉ thì  x2+x+1x2+x+1  là số hữu tỉ

Do  x>1x>1,  x−1x−1  là số vô tỉ nên 

     (x−1)(x2+x+1)(x−1)(x2+x+1)  là số vô tỉ   ↔x3−1↔x3−1   là số vô tỉ   ↔1↔1   là số vô tỉ  (vô lí)