6.b) A=\(\left(1+\frac{1}{2}\right)\times\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)\times..........\times\left(1+\frac{1}{99}\right)=\)Các bạn giúp mình nhanh và đúng nhé mình tick cho bạn đầu tiên nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right)\left(63.1,2-21.3,6+1\right)}{1-2+3-4+....+99-100}\)
\(=\frac{\frac{100\left(100+1\right)}{2}\left(\frac{3+2-6}{12}\right)\left[63\left(1,2-1,2\right)+1\right]}{\left(1-2\right)+\left(3-4\right)+....+\left(99-100\right)}\)
\(=\frac{5050.\left(-\frac{1}{12}\right).1}{-1+\left(-1\right)+\left(-1\right)+...+\left(-1\right)}\)
\(=\frac{2525.\left(-\frac{1}{6}\right)}{-50}=\frac{101}{12}\)
= 3/2 + 4/3 + 5/4 ................................ 100/99
= 100/2 = 50
\(\left(1-\frac{1}{99}\right).\left(1-\frac{1}{100}\right).....\left(1-\frac{1}{2006}\right)\)
\(=\left(\frac{99}{99}-\frac{1}{99}\right).\left(\frac{100}{100}-\frac{1}{100}\right).....\left(\frac{2006}{2006}-\frac{1}{2006}\right)\)
\(=\frac{98}{99}.\frac{99}{100}......\frac{2005}{2006}\)
\(=\frac{98.99.....2005}{99.100....2006}\)
\(=\frac{98}{2006}=\frac{49}{2006}\)
ủng hộ nha ai k mik k lại
a) \(\left(\frac{2}{5}-\frac{1}{2}\right)^2-\frac{11}{5}:\frac{-11}{5}=\left(-\frac{1}{10}\right)^2+1=1\frac{1}{100}\)
b) \(\left(-\frac{5}{7}\right)^2+8.\left(0,5\right)^2+\left(-1\right)^{2010}=\frac{25}{49}+2+1=3\frac{25}{49}\)
c) \(\frac{9999^2}{3333^2}+\left(0,5\right)^2.\left(-2\right)^4-\left(-\frac{4}{3}\right)^2=9+1-\frac{16}{9}=8\frac{2}{9}\)
d) \(\left|-\frac{2}{5}+\frac{1}{7}\right|:\frac{-3}{35}+\frac{-3}{7}.\frac{7}{5}=\frac{9}{35}.\frac{35}{-3}-\frac{3}{5}=-3\frac{3}{5}\)
e) \(\frac{1}{2}-\left(-0,4\right)+\frac{1}{3}+\frac{1}{5}-\frac{-1}{6}+\frac{-4}{35}+\frac{1}{41}\)
\(=\frac{1}{2}+\frac{2}{5}+\frac{1}{3}+\frac{1}{5}+\frac{1}{6}-\frac{4}{35}+\frac{1}{41}=1\frac{732}{1435}\)
tìm số tự nhiên nhỏ nhất biết rằng khi số này cho 23 du 21 khi chia 17du 16
Câu b: Đặt \(B=\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot...\cdot\left(\frac{1}{2004}-1\right)\)
Ta có: \(\frac{1}{2}-1=\left(-\frac{1}{2}\right);\frac{1}{3}-1=\left(-\frac{2}{3}\right);...;\frac{1}{2004}-1=\left(-\frac{2003}{2004}\right)\)
\(\Rightarrow B=\left(-\frac{1}{2}\right)\cdot\left(-\frac{2}{3}\right)\cdot...\cdot\left(-\frac{2003}{2004}\right)\)
Vì B là 2003 thừa số âm nhân lại với nhau nên B là số âm
\(\Rightarrow B=-\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2003}{2004}\right)=-\frac{1}{2004}\)
Câu a: Đặt \(A=1+2^4+2^8;B=1+2+2^2+...+2^{11}\)
\(\Rightarrow16A=2^4+2^8+2^{12}\) \(\Rightarrow15A=2^{12}-1\) \(\Rightarrow A=\frac{2^{12}-1}{15}\) \(\left(1\right)\)
\(\Rightarrow2B=2+2^2+2^3+...+2^{12}\) \(\Rightarrow B=2^{12}-1\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow A:B=\frac{2^{12}-1}{15}:\left(2^{12}-1\right)=\frac{1}{15}\)
biết làm bài 1 thôi
\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\cdot\cdot\cdot\times\left(\frac{1}{999}+1\right)\)
= \(\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times\cdot\cdot\cdot\times\frac{1000}{999}\)
lượt bỏ đi còn :
\(\frac{1000}{2}=500\)
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)
\(=\frac{3}{2}\times\frac{4}{3}\times...\times\frac{100}{99}\)
\(=\frac{100}{2}=50\)
A = 100/2 = 50