Cho Tam giác ABC vuông tại A có BE là đường phân giác. Vẽ EH vuông góc BC(H thuộc BC), gọi K là giao điểm AB và HE
a/Tam giác ABE=tam giácHBE
b/AE<EC
c/BE trung trực CK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=5cm
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra: EK=EC
tham khảo
a) Xét tam giác vuông ABE và tam giác vuông HBE (^BAE = ^BHE = 90o)
BE chung
^ABE = ^HBE (BE là phân giác ^ABC)
=> tam giác vuông ABE = tam giác vuông HBE (ch - gn)
b) Ta có: AE = HE (tam giác vuông ABE = tam giác vuông HBE)
=> E thuộc đường trung trực của AH (1)
Ta có: AB = HB (tam giác vuông ABE = tam giác vuông HBE)
=> B thuộc đường trung trực của AH (2)
Từ (1) và (2) => BE là đường trung trực của AH (đpcm)
c) Ta có: ^BEK = ^BEA + ^AEK
^BEC = ^BEH + ^HEC
Mà ^BEA = ^BEH (tam giác vuông ABE = tam giác vuông HBE)
^AEK = ^HEC (2 góc đối đỉnh)
=> ^BEK = ^BEC
Xét tam giác BEK và tam giác BEC:
^BEK = ^BEC (cmt)
^KBE = ^CBE (BE là phân giác ^ABC)
BE chung
=> tam giác BEK = tam giác BEC (g - c - g)
=> EK = EC (cặp cạnh tương ứng)
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác của góc HBA).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó; ΔBAE=ΔBHE
Suy ra: BA=BH và EA=EH
b: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó; ΔAEK=ΔHEC
Suy ra: AK=HC
Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
hay ΔBKC cân tại B
c: BK=BC=10cm
=>AC=8cm
d: Xét ΔBKC có BA/AK=BH/HC
nên AH//KC
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
=>BA=BH và EA=EH
b: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
\(\widehat{HBK}\) chung
Do đó: ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
c: Ta có: ΔBAC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(AC^2=10^2-6^2=64\)
=>\(AC=\sqrt{64}=8\left(cm\right)\)
Ta có: BK=BC
mà BC=10cm
nên BK=10cm
Hình tự vẽ
a)Xét hai tam giác vuông ABE và HBE CÓ:
AE-chung
góc ABE=góc HBE(gt)
=>tam giác ABE=tam giác HBE(ch-gn)
b)Có tam giác ABE=tam giác HBE(cmt)
=>AB=BH
=>Tam giác BHA cân tại B
mà BE là p/g của góc ABH
=>BE là đường cao, đường trung tuyến
=>BE\(\perp\) AH
c)Xét tam giác AEK và tam giác HEC CÓ
góc KAE=góc EHC=900
AE=EH
góc AEK=góc HEC
=>tam giác AEK= tam giác HEC(c.g.c)
=>EK=EC
d)Xét tam giác EHC có góc EHC=900
=> EC là cạnh lớn nhất
=>EC>EH
Mà EH=AE
=>EC>AE
mình chỉ biết chứng minh phần a thui,mong bạn thông cảm nha
a)xét tam giác ABE và tam giác HBE có
góc BAE= góc BHE(= 90 độ)
cạnh BE chung
góc ABE= góc HBE(giả thiết)
=>tam giác ABE = tam giác HBE(c/h-g/n)(đpcm)