Cho 5 VD về đơn thức bậc 4 có các biến là x,y,z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5 ví dụ đơn thức bậc 4 có các biến là x, y, z là:
4x2yz; -5xy2z;
3xyz2; 6xyz2; -2x2yz
2. Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến. Ví dụ: 2x3y2,...
3. Để cộng (hay trừ) ác đơn thức đồng dạng, ta cộng ( hay trừ ) các hệ số với nhau và giữ nguyên phần biến.
4. Khi đa thức P (x) có giá trị bằng 0 thì ta nói a là một nghiệm của đa thức đó.
Câu 1 mình không biết.
Câu 1:
2x^3y^2
3x^6y^3
4x^5y^9
6x^8y^3
7x^4y^8
Câu 2:
Hai đơnthức đồng dạng là hai đơn thức có hệ số khác không và cùng phần biến
VD:
2xyz^3 và 3xyz^3
Câu 3:
Để cộng trừ hai đơn thức đồng dạng ta giữ nguyên phần biến và cộng trừ phần hệ số
Câu 4:
Số a được gọi là nghiệm của đa thức khi
Nếu tại x=a đa thức p(x) có giá trị bằng không thì ta nói a là một nghiệm của đa thức p(x)
\(C=A\cdot B\)
\(\Rightarrow C=\left(-18x^3y^4z^5\right)\cdot\left[\dfrac{2}{9}x^5\left(y^2\right)^2\right]\)
\(\Rightarrow C=\left(-18x^3y^4z^5\right)\cdot\left(\dfrac{2}{9}x^5y^4\right)\)
\(\Rightarrow C=\left(-18\cdot\dfrac{2}{9}\right)\cdot\left(x^3\cdot x^5\right)\cdot\left(y^4\cdot y^4\right)\cdot z^5\)
\(\Rightarrow C=-4x^8y^8z^5\)
Phần biến là: \(x^8y^8z^5\)
Phần hệ số của C là: \(-4\)
Bậc của C là: \(8+8+5=21\)