tìm m ,n , p biết
a] [ 1/3]mũ m = 1/ 81
b] [3/5]mũ n =[9/25]mũ 5
c] [-0,25] mũ p = 1/ 256
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6 :
a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)
c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)
d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)
Bài 7 :
a) \(3^x+3^{x+2}=9^{17}+27^{12}\)
\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)
\(\Rightarrow10.3^x=3^{34}+3^{36}\)
\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)
\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)
b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)
\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)
\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)
c) Bài C bạn xem lại đề
d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)
\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)
\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)
\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)
\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)
\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)
a) \(2^n:4=16\Rightarrow2^n:2^2=2^4\Rightarrow2^{n-2}=2^4\Rightarrow n-2=4\Rightarrow n=6\)
b) \(6\cdot2^n+3\cdot2^n=9\cdot2^9\)
=> \(\left(6+3\right)\cdot2^n=9\cdot2^9\)
=> \(9\cdot2^n=9\cdot2^9\Rightarrow n=9\)
c) \(3^n:3^2=243\)
=> \(3^{n-2}=3^5\)
=> n - 2 = 5 => n = 7
d) 25 < 5n < 3125
=> 52 < 5n < 55
=> n \(\in\){3;4}
Bài 1.
a) \(12^3.3^3=\left(12.3\right)^3=36^3.\)
b) \(2^5.8^4=2^5.\left(2^3\right)^4=2^5.2^{12}=2^{17}.\)
c) \(3^8.9^0.27^2=3^8.1.\left(3^3\right)^2=3^8.3^6=3^{14}.\)
d) \(2^4.5^4=\left(2.5\right)^4=10^4.\)
e) \(2^4.4^3=2^4.\left(2^2\right)^3=2^4.2^6=2^{10}.\)
Bài 2.
a) \(5^x=259\)
Vì 5 khi nâng lên luỹ thừa bậc mấy thì chữ số tận cùng của kết quả luôn bằng 5.
Mà 259 có tận cùng là 9
\(\Rightarrow5^x=259\) (vô lý)
\(\Rightarrow\) Phương trình vô nghiệm.
b) \(\left(7x-11\right)^3=2^5.5^2+260\)
\(\Leftrightarrow\left(7x-11\right)^3=800+260\)
\(\Leftrightarrow\left(7x-11\right)^3=1060\)
\(\Leftrightarrow7x-11=\sqrt[3]{1060}\)
\(\Leftrightarrow7x=\sqrt[3]{1060}+11\)
\(\Leftrightarrow x=\dfrac{\sqrt[3]{1060}+11}{7}\).
a) \(\left(\frac{1}{3}\right)^m=\frac{1}{81}\)
\(\Rightarrow\frac{1}{3^m}=\frac{1}{81}\)
<=> 3m = 81
=> 3m = 34 ( 81 = 34 )
<=> m = 4
b) \(\left(\frac{3}{5}\right)^n=\left(\frac{9}{25}\right)^5\)
\(\left(\frac{3}{5}\right)^n=\frac{9}{9765625}\)
\(\Rightarrow\frac{3}{5^n}=\frac{9}{9765625}\)
=> 5n = 9765625
=> 5n = 510 ( 9765625 = 510 )
<=> n = 10
\(\left(-0,25\right)^p=\frac{1}{256}\)
\(\left(\frac{-1}{4}\right)^p=\frac{1}{256}\)
\(\Rightarrow\frac{-1}{4^p}=\frac{1}{256}\)
=> 4p = 256
=> 4p = 44 ( 256 = 44 )
<=> p = 4