K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2017

Ta có :

1/n - 1/n + k

=  n + k - n / n . ( n + k ) 

= k / n . ( n + k )

8 tháng 9 2017

Ta có    \(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\cdot\left(n+k\right)}-\frac{n}{n\cdot\left(n+k\right)}=\frac{k}{n\cdot\left(n+k\right)}\)      (dpcm)

1 tháng 10 2015

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{n+k-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)

=> điều phải chứng minh

1 tháng 10 2015

\(\frac{k}{n\left(n+k\right)}=\frac{1}{n+k}\)

Vì n(n+k) chia hết cho cả n và n  +  k nên ta lấy n(n+k) là mẫu chung

\(\frac{1}{n}=\frac{1.\left(n+k\right)}{n.\left(n+k\right)}=\frac{n+k}{n\left(n+k\right)}\) ; \(\frac{1}{n+k}=\frac{1.n}{n\left(n+k\right)}=\frac{n}{n\left(n+k\right)}\) (nhân cả tử phân số này cho phân số kia)

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{k+n-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)

29 tháng 10 2016

chỗ nào không cứ hỏi mình nhébanhqua

Hoán vị, chỉnh hợp, tổ hợp

24 tháng 3 2016

Ta có :

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n.\left(n+k\right)}-\frac{n}{n.\left(n+k\right)}=\frac{n+k-n}{n.\left(n+k\right)}=\frac{k}{n.\left(n+k\right)}\)

Vậy \(\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n.\left(n+k\right)}\)

24 tháng 3 2016

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)

NV
4 tháng 3 2022

Do \(x^2+2mx+n=0\) có nghiệm \(\Rightarrow m^2-n\ge0\)

Xét pt: \(x^2+2\left(k+\dfrac{1}{k}\right)mx+n\left(k+\dfrac{1}{k}\right)^2=0\)

\(\Delta'=\left(k+\dfrac{1}{k}\right)^2m^2-n\left(k+\dfrac{1}{k}\right)^2=\left(k+\dfrac{1}{k}\right)^2\left(m^2-n\right)\ge0\) với mọi k

\(\Rightarrow\)Pt đã cho có nghiệm

4 tháng 3 2022

em đọc ko hiểu gì hết

2 tháng 11 2019

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(A=1-\frac{1}{n+1}\)

2 tháng 11 2019

a) Ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)

           \(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)

           \(A=1-\frac{1}{n+1}\)

           \(A=\frac{n+1}{n+1}-\frac{1}{n+1}\)

           \(A=\frac{n}{n+1}\)

Học tốt nha^^

9 tháng 11 2017

ta có \(\left(1+\frac{1}{k}-\frac{1}{k-1}\right)^2\)

        = \(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)\(+\frac{2}{k-1}-\frac{2}{k}-\frac{2}{k\left(k-1\right)}\)

       =\(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2k-2k+2-2}{k\left(k-1\right)}\)

      = \(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)

=> \(\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}\)\(1+\frac{1}{k-1}-\frac{1}{k}\)(đpcm)

16 tháng 6 2024

CÂU CỦA BẠN KIA SAI R

bạn ấy bị sai cái phần mà cộng cho cả tử và mẫu cho a/k