K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có:\(\frac{a}{a+1}=1-\frac{1}{a+1};\frac{2b}{2+b}=2-\frac{4}{2+b};\frac{3c}{3+c}=3-\frac{9}{3+c}\)

\(\Rightarrow\frac{a}{1+a}+\frac{2b}{2+b}+\frac{3c}{3+c}\le\left(1+2+3\right)-\left(\frac{1}{a+1}+\frac{4}{b+2}+\frac{9}{c+3}\right)\)

\(\le6-\frac{\left(1+2+3\right)^2}{a+b+c+1+2+3}=6-\frac{36}{7}=\frac{6}{7}\left(Q.E.D\right)\)

14 tháng 3 2019

Web có hơn 600 nghìn câu hỏi mà toàn thấy câu hỏi giống nhau với câu thấy nhiều đến chảy hết nước mắt rồi

NV
1 tháng 8 2020

\(1-\frac{a}{a+1}\ge\frac{2b}{b+1}+\frac{3c}{c+1}\Leftrightarrow\frac{1}{a+1}\ge\frac{b}{b+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{c}{c+1}+\frac{c}{c+1}\ge5\sqrt[5]{\frac{b^2c^3}{\left(b+1\right)^2\left(c+1\right)^3}}\)

Tương tự:

\(\frac{1}{b+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+3.\frac{c}{c+1}\ge5\sqrt[5]{\frac{abc^3}{\left(a+1\right)\left(b+1\right)\left(c+1\right)^3}}\)

\(\Leftrightarrow\frac{1}{\left(b+1\right)^2}\ge25\sqrt[5]{\frac{a^2b^2c^6}{\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^6}}\)

\(\frac{1}{c+1}\ge\frac{a}{a+1}+2.\frac{b}{b+1}+2.\frac{c}{c+1}\ge5\sqrt[5]{\frac{ab^2c^2}{\left(a+1\right)\left(b+1\right)^2\left(c+1\right)^2}}\)

\(\Leftrightarrow\frac{1}{\left(c+1\right)^3}\ge125\sqrt[5]{\frac{a^3b^6c^6}{\left(a+1\right)^3\left(b+1\right)^6\left(c+1\right)^6}}\)

Nhân vế với vế:

\(\frac{1}{\left(a+1\right)\left(b+1\right)^2\left(c+1\right)^3}\ge5^6\sqrt[5]{\frac{a^5b^{10}c^{15}}{\left(a+1\right)^5\left(b+1\right)^{10}\left(c+1\right)^{15}}}=\frac{5^6ab^2c^3}{\left(a+1\right)\left(b+1\right)^2\left(c+1\right)^3}\)

\(\Leftrightarrow ab^2c^3\le\frac{1}{5^6}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{5}\)

19 tháng 2 2020

Áp dụng bđt Cauchy-schwarz dạng engel ta có:

1. \(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\ge\frac{\left(a+b+c\right)^2}{\left(a+2b\right)+\left(b+2c\right)+\left(c+2a\right)}=\frac{a+b+c}{3}\)

Dấu "=" \(\Leftrightarrow\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}\Leftrightarrow a=b=c\)

2. \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{\left(2a+3b\right)+\left(2b+3c\right)+\left(2c+3a\right)}=\frac{a+b+c}{5}\)

Dấu "=" \(\Leftrightarrow a=b=c\)

3 tháng 4 2020

\(M=\left(a-\frac{6}{a+1}\right)+\left(2b-\frac{3}{b+1}\right)+\left(3c-\frac{2}{c+1}\right)\)

\(M=\left(a+2b+3c\right)-6\left(\frac{1}{a+1}+\frac{1}{2b+2}+\frac{1}{3c+3}\right)\)

\(M\le6-\frac{6.\left(1+1+1\right)^2}{a+1+2b+2+3c+3}\)

\(M\le6-\frac{6.9}{6+6}=6-\frac{9}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=3;b=1;c=\frac{1}{3}\)