điền dấu :
\(\frac{3}{5}....\frac{4}{7}\)
\(\frac{2}{3}....\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,4\frac{1}{2}< 4\frac{3}{4}\)
\(b,2\frac{4}{5}< 3\frac{1}{4}\)
\(c,7\frac{2}{9}>5\frac{2}{9}\)
\(d,13\frac{5}{6}< 13\frac{6}{7}\)
Nao Tomori
\(a,4\frac{1}{2}....4\frac{3}{4}\Rightarrow4\frac{1}{2}=\frac{13}{2};4\frac{3}{4}=\frac{19}{4}\)
\(=4\frac{1}{2}< 4\frac{3}{4}\)
\(b,2\frac{4}{5}....3\frac{1}{4}\Rightarrow2\frac{4}{5}=\frac{14}{5};3\frac{1}{4}=\frac{13}{12}\)
\(=2\frac{4}{5}>3\frac{1}{4}\)
\(c,7\frac{2}{9}....5\frac{2}{9}\Rightarrow7\frac{2}{9}=\frac{65}{9};5\frac{2}{9}=\frac{42}{9}\)
\(=7\frac{2}{9}>5\frac{2}{9}\)
\(d,13\frac{5}{6}....13\frac{6}{7}\Rightarrow13\frac{5}{6}=\frac{83}{6};13\frac{6}{7}=\frac{97}{7}\)
\(=13\frac{5}{6}< 13\frac{6}{7}\)
P/s: Quy đồng là bước trung gian nên mk ko ghi bước quy đồng nha
a)
\(\begin{array}{l}\left( {\frac{{ - 3}}{7}} \right) + \left( {\frac{5}{6} - \frac{4}{7}} \right)\\ = \left( {\frac{{ - 3}}{7}} \right) + \frac{5}{6} - \frac{4}{7}\\ = \left[ {\left( {\frac{{ - 3}}{7}} \right) - \frac{4}{7}} \right] + \frac{5}{6}\\ =\frac{-7}{7}+\frac{5}{6}\\= - 1 + \frac{5}{6}\\ = \frac{{ - 1}}{6}\end{array}\)
b)
\(\begin{array}{l}\frac{3}{5} - \left( {\frac{2}{3} + \frac{1}{5}} \right)\\ = \frac{3}{5} - \frac{2}{3} - \frac{1}{5}\\ = (\frac{3}{5} - \frac{1}{5}) - \frac{2}{3}\\ = \frac{2}{5} - \frac{2}{3}\\ = \frac{6}{{15}} - \frac{{10}}{{15}}\\ = \frac{{ - 4}}{{15}}\end{array}\)
c)
\(\begin{array}{l}\left[ {\left( {\frac{{ - 1}}{3}} \right) + 1} \right] - \left( {\frac{2}{3} - \frac{1}{5}} \right)\\ = \left( {\frac{{ - 1}}{3}} \right) + 1 - \frac{2}{3} + \frac{1}{5}\\ = \left( {\frac{{ - 1}}{3} - \frac{2}{3}} \right) + 1 + \frac{1}{5}\\ = \frac{-3}{3}+1+\frac{1}{5}\\= - 1 + 1 + \frac{1}{5}\\ = \frac{1}{5}\end{array}\)
d)
\(\begin{array}{l}1\frac{1}{3} + \left( {\frac{2}{3} - \frac{3}{4}} \right) - \left( {0,8 + 1\frac{1}{5}} \right)\\ = 1 + \frac{1}{3} + \frac{2}{3} - \frac{3}{4} - \left( {\frac{4}{5} + 1 + \frac{1}{5}} \right)\\=1+\frac{3}{3}-\frac{3}{4}-(\frac{5}{5}+1)\\ = 1 + 1 - \frac{3}{4} - (1+1)\\ = - \frac{3}{4}\end{array}\).
\(A=-7+\frac{3}{4}-\frac{1}{3}-6+\frac{5}{4}-\frac{4}{3}-3-\frac{7}{4}+\frac{5}{3}\)
\(A=\left(-7-6-3\right)+\left(\frac{3}{4}+\frac{5}{4}-\frac{7}{4}\right)+\left(\frac{5}{3}-\frac{1}{3}-\frac{4}{3}\right)\)
\(A=-16+\frac{1}{4}+0\)
\(A=-15\frac{3}{4}\)
\(A=\left(-7+\frac{3}{4}-\frac{1}{3}\right)-\left(6-\frac{5}{4}+\frac{4}{3}\right)-\left(3+\frac{7}{4}-\frac{5}{3}\right)\)
\(=-7+\frac{3}{4}-\frac{1}{3}-6+\frac{5}{4}-\frac{4}{3}-3-\frac{7}{4}+\frac{5}{3}\)
\(=\left(-7-6-3\right)+\left(\frac{3}{4}+\frac{5}{4}-\frac{7}{4}\right)+\left(\frac{-1}{3}-\frac{4}{3}+\frac{5}{3}\right)\)
\(=-16-\frac{1}{4}\)
\(\frac{1}{2}+\frac{1}{2}=1\)
\(1+\frac{1}{3}=\frac{4}{3}\)
\(\frac{4}{3}+\frac{1}{4}=\frac{19}{12}\)
\(\frac{19}{12}+\frac{1}{5}=\frac{107}{60}\)
\(\frac{107}{60}-1=\frac{47}{60}.\)
a) \(\frac{1}{2}+\frac{1}{4}< \frac{3}{4}+\frac{1}{5}\)
b) \(\frac{7}{13}+\frac{2}{9}>\frac{3}{26}+\frac{7}{13}\)
~ GHÉT ..............................~
a) \(\frac{1}{2}+\frac{1}{4}< \frac{3}{4}+\frac{1}{5}\)
b) \(\frac{7}{13}+\frac{2}{9}>\frac{3}{26}+\frac{7}{13}\)
a)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right).\\A = \left( {\frac{{30}}{{15}} + \frac{5}{{15}} - \frac{6}{{15}}} \right) - \left( {\frac{{105}}{{15}} - \frac{9}{{15}} - \frac{{20}}{{15}}} \right) - \left( {\frac{3}{{15}} + \frac{{25}}{{15}} - \frac{{60}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} - \left( {\frac{{ - 32}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} + \frac{{32}}{{15}}\\A = \frac{{ - 15}}{{15}}\\A = - 1\end{array}\)
b)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right)\\A = 2 + \frac{1}{3} - \frac{2}{5} - 7 + \frac{3}{5} + \frac{4}{3} - \frac{1}{5} - \frac{5}{3} + 4\\A = \left( {2 - 7 + 4} \right) + \left( {\frac{1}{3} + \frac{4}{3} - \frac{5}{3}} \right) + \left( { - \frac{2}{5} + \frac{3}{5} - \frac{1}{5}} \right)\\A = - 1 + 0 + 0 = - 1\end{array}\)
\(\dfrac{3}{4}\times\dfrac{8}{5}:1\dfrac{1}{6}\)
=\(\dfrac{6}{5}:\) \(\dfrac{7}{6}\)
=\(\dfrac{6}{5}\times\dfrac{6}{7}=\dfrac{36}{35}\)
2\(\dfrac{1}{3}\) x 1\(\dfrac{1}{4}\) -\(\dfrac{7}{5}\)
\(\dfrac{7}{3}\times\dfrac{5}{4}-\) \(\dfrac{7}{5}\)
\(\dfrac{35}{12}-\dfrac{7}{5}\)
\(\dfrac{175}{60}-\dfrac{84}{60}=\dfrac{91}{60}\)
4\(\dfrac{2}{3}+1\dfrac{1}{4} +2\dfrac{1}{3}+2\dfrac{3}{7}\)
(4 +2) + \(\left(\dfrac{2}{3}+\dfrac{1}{3}\right)\) +1\(\dfrac{1}{4}\) + \(2\dfrac{3}{7}\)
6 + 1 + \(\dfrac{5}{4}\) + \(\dfrac{17}{7}\)
7 + \(\dfrac{103}{28}\)
\(\dfrac{299}{28}\)
cau a dau nhi cuoi cung k phai j dau nha ! mk an lom !
\(a,\)\(\left|x+5\right|=\frac{1}{7}-\left|\frac{4}{3}-\frac{1}{6}\right|\)
\(\Leftrightarrow\left|x+5\right|=\frac{1}{7}-\frac{7}{6}\)
\(\Leftrightarrow\left|x+5\right|=\frac{-43}{42}\)
ta có |x+5| \(\ge\)0 \(\forall x\)
Mà \(-\frac{43}{42}< 0\)nên ko có giá trị x thoả mãn
b,
\(\left|x+\frac{2}{3}\right|=\frac{1}{2}-\left(\frac{1}{4}+\frac{2}{3}\right)\)
\(\Leftrightarrow\left|x+\frac{2}{3}\right|=\frac{11}{12}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{2}{3}=\frac{11}{12}\forall x\ge-\frac{2}{3}\\-x-\frac{2}{3}=\frac{11}{12}\forall< -\frac{2}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=-\frac{19}{12}\end{cases}}\)(thoả mãn đk)
\(\frac{3}{5}>\frac{4}{7};\frac{2}{3}< \frac{3}{2}\)
k mik va kb lun nha
ai dấu theo thứ tự ;>;<