chứng minh: A=2+2 mu 2 + 2 mu 3+ ... + 2 mũ 2016
a) chia hết cho 3, 6
b) chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CHO A= 3+3MU2+3mu3+3mu4+...+3mu2017 a) tim so tu nhien N biet 2A +3 = 3n b)tim chu so tan cung cua A
Bài 4:
Ta có:
M=1+7+72+...+781
M=(1+7+72+73)+(74+75+76+77)+...+(778+779+780+781)
M=(1+7+72+73)+74.(1+7+72+73)+...+778.(1+7+72+73)
M=400+74.400+...+778.400
M=400.(1+74+...+778)
\(\Rightarrow\)M=......0
Vậy chữ số tận cùng của M là chữ số 0
Bài 5:
a)Ta có:
M=1+2+22+...+2206
M=(1+2+22)+(23+24+25)+...+(2204+2205+2206)
M=(1+2+22)+23.(1+2+22)+...+2204.(1+2+22)
M=7+23.7+...+2204.7
M=7.(1+23+...+2204)\(⋮\)7
Vậy M chia hết cho 7
c)Câu này đề có phải là M+1=2x ko?Nếu đúng thì giải như zầy nè:
Ta có:
M=1+2+22+...+2206
2M=2+22+23+...+2207
2M-M=(2+22+23+...+2207)-(1+2+22+...+2206)
M=2+22+23+...+2207-1-2-22-...-2206
\(\Rightarrow\)M=2207-1
M+1=2207-1+1
M+1=2207
Ta có:
M+1=2x
2x=M+1
2x=2207
x=2207:2
x=\(\frac{2^{207}}{2}\)
Bài 6:
Ta có:
A=(1+3+32)+(33+34+35)+...+(357+358+359)
A=(1+3+32)+33.(1+3+32)+...+357.(1+3+32)
A=13+33.13+...+357.13
A=13.(1+33+..+357)\(⋮\)13
Vậy A chia hết cho 13
mk chỉ biết giải dc từng nấy câu thui. thông cảm cho mk nha
vì 84 chia hết cho 3,nên 2+22+...+284 chia hết cho 3
vì 84 chia hết cho 7,nên 2+22+...+284 chia hết cho 7
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
a)
= 2 ( 1 + 2) + 22(1 +2) +.........+ 2201591 +2)
= 3( 2 + 22 +........+ 22015) nên chia hết cho 3
b)
= 2( 1 + 2 + 22) + 23( 1 + 2 +22) +......+ 22014( 1 + 2 +22)
= 7( 2 + 23 + .........+ 22014) nên chia hết cho 7