Tìm a,b biết rằng x4-3x+2=(x-1)(x3+ax2+bx-2)
GIÚP MÌNH VỚI!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: 5a +b +2c =0 => b = -5a -2c
=>Q(2).Q(-1) = (4a +2b +c)(a -b +c) = (4a -10a -4c +c)(a +5a + 2c +c)
= (-6a - 3c)(6a +3c) = - (6a +3c)^2 <= 0 với mọi a,c => Q(2).Q(-1),<_0 với 5a+b+2c=0.
b. Q(x) = 0 với mọi x nên:
Q(0) =0 => c =0 (1)
Q(1) = a+b =0 (2)
Q(-1) = a-b =0 (3)
Từ (2) và (3) => a =b =0 kết hợp với (1) suy ra a =b= c =0.
Do x = -1 là nghiệm của phương trình
⇒ a - b - 1 - 2 = 0
⇒ a - b = 3
Tương tự ta có a + b = 1
Vậy a = 2 ; b = -1
1.
Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)
Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)
\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)
Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):
\(-x^2+x+1=-x^2+3x\)
\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)
Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\):
Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)
Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)
Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ
a) \(=x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)
\(=\left(x-1\right)^2\left(x^2+x+1\right)\)
b) \(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)
c) Đổi đề: \(a^2x+a^2y-7x-7y\)
\(=a^2\left(x+y\right)-7\left(x+y\right)=\left(x+y\right)\left(a^2-7\right)\)
d) \(=x^2\left(a-b\right)+y\left(a-b\right)=\left(a-b\right)\left(x^2+y\right)\)
e) \(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)
\(=\left(x+1\right)^2\left(x^2-x+1\right)\)
g) \(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)
h) \(=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)
i) \(=\left(x+1\right)^2-4=\left(x+1-2\right)\left(x+1+2\right)=\left(x-1\right)\left(x+3\right)\)
a\(x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)
b)\(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)
d)\(=a\left(x^2+y\right)-b\left(x^2+y\right)=\left(x^2+y\right)\left(x-b\right)\)
e)\(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)
g)\(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)
h)\(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)=\left(x-y\right)\left(x+y-1\right)\)
i)\(=\left(x-1\right)^2-4=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\)
x4 - 3x + 2 = (x4 - x3) + (x3 - x2) + (x2 - x) + (-2x + 2)
= (x - 1)(x3 + x2 + x - 2)
a) Ta có x 3 = 2 6 => 6.x = 3.2 => x =1
b) Ta có x 4 = 1 − 2 => -2.x = 1.4 =>x = -2
c) 3 − 9 = 3 x => x= -9
\(x^4-3x+2=x\left(x^3+ax^2+bx-2\right)-\left(x^3+ax^2+bx-2\right)\)
\(\Rightarrow x^4-3x+2=x^4+\left(a-1\right)x^3+\left(b-a\right)x^2-\left(b+2\right)x+2\)
Đồng nhất hệ số 2 vế ta được:
\(\left\{{}\begin{matrix}a-1=0\\b-a=0\\b+2=3\end{matrix}\right.\) \(\Rightarrow a=b=1\)
\(x^4-3x+2=\left(x-1\right)\left(x^3+ax^2+bx-2\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x-2\right)=\left(x-1\right)\left(x^3+ax^2+bx-2\right)\)
\(\Rightarrow x^3+x^2+x-2=x^3+ax^2+bx-2\)
\(\Rightarrow1\cdot x^2+1\cdot x=ax^2+bx\)
\(\Rightarrow a=1\) và \(b=1\)