chứng minh 3/5.11 + 5/11.21 + 7/21.35 + 9/35.53 < 1
Các bạn giúp mik nhe
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{5.11}+\frac{5}{11.21}+\frac{7}{21.35}+\frac{9}{35.53}=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{11}+\frac{1}{11}-\frac{1}{21}+\frac{1}{21}-\frac{1}{35}+\frac{1}{35}-\frac{1}{53}\right)=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{53}\right)=\frac{1}{10}-\frac{1}{106}<\frac{1}{10}<1\)
\(\frac{3}{13}.\frac{5}{9}+\frac{1}{6}:\frac{13}{3}+1\)
\(=\frac{3}{13}.\frac{5}{9}+\frac{1}{6}.\frac{3}{13}+1\)
\(=\frac{3}{13}.\left(\frac{5}{9}+\frac{1}{6}\right)+1\)
\(=\frac{3}{13}.\left(\frac{30+9}{54}\right)+1\)
\(=\frac{3}{13}.\frac{39}{54}+1\)
\(=\frac{1}{6}+1\)
\(=\frac{7}{6}\)
\(\frac{5}{6}-\frac{7}{9}.\frac{2}{13}-\frac{7}{9}.\frac{11}{13}+\frac{-2}{9}\)
\(=\frac{5}{6}-\frac{7}{9}.\left(\frac{2}{13}-\frac{11}{13}\right)+\frac{-2}{9}\)
\(=\frac{5}{6}-\frac{7}{9}.\frac{-9}{13}-\frac{2}{9}\)
\(=\frac{5}{6}-\frac{-7}{13}-\frac{2}{9}\)
\(\frac{5}{6}-\frac{7}{9}.\frac{2}{13}-\frac{7}{9}.\frac{11}{13}+\frac{-2}{9}\)
\(=\frac{5}{6}-\frac{7}{9}.\left(\frac{2}{13}-\frac{11}{13}\right)+\frac{-2}{9}\)
\(=\frac{5}{6}-\frac{7}{9}.\frac{-9}{13}-\frac{2}{9}\)
\(=\frac{5}{6}-\frac{-7}{13}-\frac{2}{9}\)
\(=\frac{5}{6}+\frac{7}{13}-\frac{2}{9}\)
\(=\frac{195+126-52}{234}\)
\(=\frac{269}{234}\)
\(\frac{3}{13}.\frac{5}{9}+\frac{1}{6}:\frac{13}{3}+1\)
\(=\frac{3}{13}.\frac{5}{9}+\frac{1}{6}.\frac{3}{13}+1\)
\(=\frac{3}{13}.\left(\frac{5}{9}+\frac{1}{6}\right)+1\)
\(=\frac{3}{13}.\left(\frac{30+9}{54}\right)+1\)
\(=\frac{3}{13}.\frac{39}{54}+1\)
\(=\frac{1}{6}+1=\frac{1}{6}+\frac{6}{6}\)
\(=\frac{7}{6}\)
\(\frac{-7}{9}.\frac{2}{13}-\frac{7}{9}.\frac{11}{13}+\frac{-2}{9}\)
\(=\frac{-7}{9}.\frac{2}{13}+\frac{-7}{9}.\frac{11}{13}+\frac{-2}{9}\)
\(=\frac{-7}{9}.\left(\frac{2}{13}+\frac{11}{13}\right)+\frac{-2}{9}\)
\(=\frac{-7}{9}.1+\frac{-2}{9}\)
\(=\frac{-7}{9}+\frac{-2}{9}\)
\(=\frac{-9}{9}=-1\)
\(\frac{2}{13}.\frac{2}{7}.5\)
\(=\frac{2.2.5}{13.7}\)
\(=\frac{20}{91}\)
\(\frac{1}{5}.\frac{11}{12}.\frac{21}{6}\)
\(=\frac{11.21}{5.12.6}\)
\(=\frac{231}{360}=\frac{77}{120}\)
\(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{9}{10!}\)
\(A=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{10-1}{10!}\)
\(A=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+...+\frac{10}{10!}-\frac{1}{10!}\)
\(A=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}+...+\frac{1}{9!}-\frac{1}{10!}\)
\(A=1-\frac{1}{10!}\)
\(\Rightarrow A< 1\left(đpcm\right)\)
\(3.M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{38}}\)
=> \(3M-M=2M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{38}}-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{39}}\)
=> \(2M=1-\frac{1}{3^{39}}\)
=> \(M=\frac{1}{2}\left(1-\frac{1}{3^{39}}\right)\)
do \(1-\frac{1}{3^{39}}< 1\)
=> \(\frac{1}{2}\left(1-\frac{1}{3^{39}}\right)< \frac{1}{2}.1=\frac{1}{2}\)
Vay \(M< \frac{1}{2}\)
Chuc bn hoc tot !
.
...