K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

23 tháng 8 2015

Ta có:

\(A=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{100}-\left(\frac{1}{99}-\frac{1}{100}\right)-\left(\frac{1}{98}-\frac{1}{99}\right)-\left(\frac{1}{97}-\frac{1}{98}\right)-...-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(1-\frac{1}{2}\right)\)

\(=\frac{1}{100}-\frac{1}{99}+\frac{1}{100}-\frac{1}{98}+\frac{1}{99}-\frac{1}{97}+\frac{1}{98}...-\frac{1}{2}+\frac{1}{3}-1+\frac{1}{2}\)

\(=\frac{1}{100}+\frac{1}{100}-1\)

\(=\frac{1}{50}-\frac{50}{50}\)

\(=-\frac{49}{50}\)

Câu này khó quá ta mình suy nghĩ này giờ mà vẫn chưa ra

19 tháng 9 2015

= (1/99-1/100)- (1/98-1/99)-...(1/1-1/2)

= -(1/1-1/2+1/3-1/4+...+1/99-1/100)

=-(1/1-1/100)

=-99/100

trong câu hỏi tương tự rõ hơn

13 tháng 7 2016

\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-1+\frac{1}{100}\)

\(C=\frac{-49}{50}\)

13 tháng 7 2016

C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1

C = 1/100 - (1/100.99 + 1/99.98 + 1/98.97 + ... + 1/3.2 + 1/2.1)

C = 1/100 - (1/1.2 + 1/2.3 + ... + 1/98.99 + 1/99.100)

C = 1/100 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/98 - 1/99 + 1/99 - 1/100)

C = 1/100 - (1 - 1/100)

C = 1/100 - 99/100

C = -98/100 = -49/50

6 tháng 7 2019

\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)

\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}=...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(=-\left(1-\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right).\)

\(=-\left(1-\frac{1}{100}\right)=-\frac{99}{100}\)

chúc bạn học tốt

6 tháng 7 2019

Trả lời

1/100.99-1/99.98-1/98.97-...-1/3.2-1/2.1

=1/100-1/1

=1/100-100/100

=-99/100.

17 tháng 1 2016

S=\(\frac{1}{100}-\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+\frac{1}{97}-......-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)\(=1-\frac{1}{100}-\frac{2}{99}\)\(=\frac{9601}{9900}\)

17 tháng 1 2016

tính phải ko

 

12 tháng 6 2015

=> C = \(-\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{99.100}+\frac{1}{100}\)

=> C = \(-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)+\frac{1}{100}\)

=> C = \(-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{100}\)

=> C = \(-\left(1-\frac{1}{100}\right)+\frac{1}{100}\)

=>  C =\(-1+\frac{1}{100}+\frac{1}{100}\)

=> C = \(-1+\left(\frac{1}{100}+\frac{1}{100}\right)\)

=> C = \(-1+\frac{1}{50}\)

=> C =  \(-\frac{49}{50}\)

KL : C = \(-\frac{49}{50}\)

8 tháng 9 2016

Ta có:\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{9900}-\left(\frac{1}{99.98}+\frac{1}{98.97}+\frac{1}{97.96}+....+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

\(=\frac{1}{9900}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\frac{98}{99}=-\frac{9799}{9900}\)

30 tháng 12 2017

\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{100.99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)

\(=\frac{1}{9900}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\frac{98}{99}=-\frac{9799}{9900}\)

15 tháng 6 2016

C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1

C = 1/100 - (1/100.99 + 1/99.98 + 1/98.97 + ... + 1/3.2 + 1/2.1)

C = 1/100 - (1/1.2 + 1/2.3 + ... + 1/97.98 + 1/98.99 + 1/99.100)

C = 1/100 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100)

C = 1/100 - ( 1 - 1/100)

C = 1/100 - 99/100

C = -98/100 = -49/50

6 tháng 1 2016

1/100-1/100.99-1/99.98-1/98.97-...-1/3.2-1/2.1

=-(-1/100+1/100.99+1/99.98+1/98.97+...+1/3.2+1/2.1)

=-(-1/100+1/100-1/99+1/99-1/98+1/98-1/97+...+1/3-1/2+1/2-1)

=-(-1)=1