√x + 2√y = 10. Chứng minh x+y >= 20
Mọi ng giúp tớ với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(2x^2+3x+2\)
\(\Leftrightarrow\) \(\left(x^2+2x+1^2\right)+\left(x^2+x+1^2\right)\)
\(\Leftrightarrow\) \(\left(x^2+2.x.1+1^2\right)\) + \(\left(x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
\(\Leftrightarrow\) \(\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+1\right)^2\ge0và\left(x+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\) \(\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy \(2x^2+3x+2>0\left(\forall_x\right)\)
a)
\(2x^2+3x+2=\left(x^2+2x+1\right)+\left(x^2+2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\\ =\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
(vì >3/4 nên >0)
a: \(x^2-5x+10\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)
b: \(2x^2+8x+15\)
\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x+2\right)^2+7>0\forall x\)
Áp dụng bđt BCS, ta có:
\(100=\left(\sqrt{x}+2\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]=5\left(x+y\right)\Rightarrow x+y\ge20.\)